U.S. Army Coast. Eug. Res. G.TP 82-2

-HiBREN

# Computer Algorithm to Calculate Longshore Energy Flux and Wave Direction from a Two Pressure Sensor Array

by

Todd L. Walton, Jr. and Robert G. Dean

# **TECHNICAL PAPER NO. 82-2**

**AUGUST 1982** 



Approved for public release; distribution unlimited.



U.S. ARMY, CORPS OF ENGINEERS COASTAL ENGINEERING RESEARCH CENTER

> Kingman Building Fort Belvoir, Va. 22060

Reprint or republication of any of this material shall give appropriate credit to the U.S. Army Coastal Engineering Research Center.

Limited free distribution within the United States of single copies of this publication has been made by this Center. Additional copies are available from:

> National Technical Information Service ATTN: Operations Division 5285 Port Royal Road Springfield, Virginia 22161

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.



UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

| REPORT DOCUMENTATION                                                                                                                                                                                                                                                                                  | PAGE                                | READ INSTRUCTIONS<br>BEFORE COMPLETING FORM                              |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------|--|--|
| 1. REPORT NUMBER                                                                                                                                                                                                                                                                                      | 2. GOVT ACCESSION NO.               | 3. RECIPIENT'S CATALOG NUMBER                                            |  |  |
| TP 82-2                                                                                                                                                                                                                                                                                               |                                     |                                                                          |  |  |
| 4. TITLE (and Subtitie)                                                                                                                                                                                                                                                                               |                                     | S. TYPE OF REPORT & PERIOD COVERED                                       |  |  |
| COMPUTER ALGORITHM TO CALCULATE LO                                                                                                                                                                                                                                                                    | NGSHORE                             | Technical Paper                                                          |  |  |
| PRESSURE SENSOR ARRAY                                                                                                                                                                                                                                                                                 |                                     | 5. PERFORMING ORG. REPORT NUMBER                                         |  |  |
| 7. AUTHOR(a)                                                                                                                                                                                                                                                                                          |                                     | 8. CONTRACT OR GRANT NUMBER(8)                                           |  |  |
| Todd L. Walton, Jr.<br>Robert G. Dean                                                                                                                                                                                                                                                                 |                                     |                                                                          |  |  |
| 9. PERFORMING ORGANIZATION NAME AND ADDRESS                                                                                                                                                                                                                                                           | ,                                   | 10. PROGRAM ELEMENT, PROJECT, TASK<br>AREA & WORK UNIT NUMBERS           |  |  |
| Department of the Army                                                                                                                                                                                                                                                                                |                                     |                                                                          |  |  |
| Coastal Engineering Research Cente<br>Kingman Building, Fort Belvoir, Vi                                                                                                                                                                                                                              | r (CEREN-EV)<br>rginia 22060        | C31181                                                                   |  |  |
| 11. CONTROLLING OFFICE NAME AND ADDRESS                                                                                                                                                                                                                                                               |                                     | 12. REPORT DATE                                                          |  |  |
| Department of the Army                                                                                                                                                                                                                                                                                | -                                   | August 1982                                                              |  |  |
| Kingman Building, Fort Belvoir, Vi                                                                                                                                                                                                                                                                    | rginia 22060                        | 33                                                                       |  |  |
| 14. MONITORING AGENCY NAME & ADDRESS(If differen                                                                                                                                                                                                                                                      | t from Controlling Office)          | 15. SECURITY CLASS. (of this report)                                     |  |  |
|                                                                                                                                                                                                                                                                                                       |                                     | UNCLASSIFIED                                                             |  |  |
|                                                                                                                                                                                                                                                                                                       |                                     | 15e. DECLASSIFICATION/DOWNGRADING<br>SCHEDULE                            |  |  |
| Approved for public release; distribution unlimited.<br>17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, 11 different from Report)                                                                                                                                                    |                                     |                                                                          |  |  |
| 18. SUPPLEMENTARY NOTES                                                                                                                                                                                                                                                                               |                                     |                                                                          |  |  |
|                                                                                                                                                                                                                                                                                                       |                                     |                                                                          |  |  |
| 19. KEY WORDS (Continue on reverse side if necessary an                                                                                                                                                                                                                                               | d identify by block number)         |                                                                          |  |  |
| Computer program<br>Longshore energy flu                                                                                                                                                                                                                                                              | Wav<br>x Wav                        | e gage array<br>e spectra                                                |  |  |
| bediment transport                                                                                                                                                                                                                                                                                    |                                     |                                                                          |  |  |
| 20. ABSTRACT (Continue on reverse side if necessary and identify by block number)<br>A documented (FORTRAN IV) computer program is discussed as originally<br>written for the CERC Longshore Sand Transport Research Program to analyze wave<br>data collected at Channel Islands Harbor, California. |                                     |                                                                          |  |  |
| The program performs the basic<br>necessary to compute wave directio                                                                                                                                                                                                                                  | analysis of two<br>on and wave ener | wave gage pressure records<br>gy at a given frequency and<br>(continued) |  |  |

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

#### SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

computes the longshore energy flux used in sand transport for the entire energy spectrum of the wave record. This program uses linear wave theory for the wave transformation process and includes the assumption of straight and parallel bottom contours necessary for application of Snell's law of refraction.

The necessary steps in an analysis of wave data and sample outputs for some wave records from the Channel Islands wave gage pressure sensor pair are given. The program presently accepts data in the standard CERC magnetic-tape format where record lengths consist of 4,100 values.

#### PREFACE

This report provides coastal engineers with documentation necessary to compute the longshore energy flux used in sand transport rate calculation when random waves are present and synchronous data from two closely spaced pressure transducers exist. The documentation is based on a 3-year data collection effort and study of sand transport rates at Channel Islands Harbor, California. The computer program documented herein was used in wave data analysis for a two pressure sensor array installed in 30 feet of water at the site. The work was carried out under the U.S. Army Coastal Engineering Research Center's (CERC) Littoral Data Collection work unit, Shore Protection and Restoration Program, Coastal Engineering Area of Civil Works Research and Development.

This report was prepared by Dr. Todd L. Walton, Jr., Hydraulic Engineer, CERC, and Dr. Robert G. Dean, Department of Civil Engineering and College of Marine Studies, University of Delaware. Dr. Walton worked on the project under the general supervision of Dr. J.R. Weggel, Chief, Evaluation Branch, and Mr. N. Parker, Chief, Engineering Development Division.

Technical Director of CERC was Dr. Robert W. Whalin, P.E., upon publication of this report.

Comments on this publication are invited.

Approved for publication in accordance with Public Law 166, 79th Congress, approved 31 July 1945, as supplemented by Public Law 172, 88th Congress, approved 7 November 1963.

Colonel, Corps of Engineers Commander and Director

#### CONTENTS

|     | CONTREPCTON FACTORS II S CUSTOMARY TO METRIC (ST)                                                                                            | Page                                   |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|     | CONVERSION FROTORS, 0.5. COSTOMART TO METRIC (SI)                                                                                            | ر ،                                    |
|     | SYMBOLS AND DEFINITIONS                                                                                                                      | 6                                      |
| I   | INTRODUCTION                                                                                                                                 | . 7                                    |
| II  | METHODOLOGY.<br>1. Calculation of Wave Direction and Energy Spectrum at Wave Gages.<br>2. Transformation of Wave Spectrum to Breaker Line    | 7<br>8<br>12                           |
| III | MAIN PROGRAM DOCUMENTATION                                                                                                                   | 13                                     |
| IV  | SUBROUTINE DOCUMENTATION.<br>1. FFT Subroutine.<br>2. HFC Subroutine.<br>3. SWITCH Subroutine.<br>4. WVLEN Subroutine.<br>5. BUF Subroutine. | 22<br>22<br>26<br>27<br>27<br>27<br>28 |
| V   | SAMPLE OUTPUT.                                                                                                                               | 29                                     |
|     | LITERATURE CITED                                                                                                                             | 33                                     |

#### FIGURES

| 1 | Definition sketch for two sensor array                                | 10 |
|---|-----------------------------------------------------------------------|----|
| 2 | Listing of main program                                               | 14 |
| 3 | Listing of FFT subroutine                                             | 25 |
| 4 | Listing of HFC subroutine                                             | 27 |
| 5 | Listing of SWITCH subroutine                                          | 27 |
| 6 | Listing of WVLEN subroutine                                           | 28 |
| 7 | Listing of BUF subroutine                                             | 29 |
| 8 | Three examples of output for wave gage pair at Channel Islands Harbor | 30 |

| U.S.  | customary   | units  | of | measurement | used | in | this | report | can | be | converted | to |
|-------|-------------|--------|----|-------------|------|----|------|--------|-----|----|-----------|----|
| metri | ic (SI) uni | its as | fo | llows:      |      |    |      |        |     |    |           |    |

| Multiply           | by                      | To obtain                               |
|--------------------|-------------------------|-----------------------------------------|
| inches             | 25.4                    | millimeters                             |
|                    | 2.54                    | centimeters                             |
| square inches      | 6.452                   | square centimeters                      |
| cubic inches       | 16.39                   | cubic centimeters                       |
| feet               | 30.48                   | centimeters                             |
|                    | 0.3048                  | meters                                  |
| square feet        | 0.0929                  | square meters                           |
| cubic feet         | 0.0283                  | cubic meters                            |
| yards              | 0.9144                  | meters                                  |
| square yards       | 0.836                   | square meters                           |
| cubic yards        | 0.7646                  | cubic meters                            |
| miles              | 1.6093                  | kilometers                              |
| square miles       | 259.0                   | hectares                                |
| knots              | 1.852                   | kilometers per hour                     |
| acres              | 0.4047                  | hectares                                |
| foot-pounds        | 1.3558                  | newton meters                           |
| millibars          | $1.0197 \times 10^{-3}$ | kilograms per square centimeter         |
| ounces             | 28.35                   | grams                                   |
| pounds             | 453.6                   | grams                                   |
| poundo             | 0.4536                  | kilograms                               |
| ton, long          | 1.0160                  | metric tons                             |
| ton, short         | 0.9072                  | metric tons                             |
| degrees (angle)    | 0.01745                 | radians                                 |
| Fahrenheit degrees | 5/9                     | Celsius degrees or Kelvins <sup>1</sup> |

<sup>1</sup>To obtain Celsius (C) temperature readings from Fahrenheit (F) readings, use formula: C = (5/9) (F -32).

To obtain Kelvin (K) readings, use formula: K = (5/9) (F - 32) + 273.15.

#### SYMBOLS AND DEFINITIONS

| a <sub>l</sub> ,b <sub>l</sub> | Fourier series coefficients                                   |
|--------------------------------|---------------------------------------------------------------|
| В                              | distance from bottom to pressure sensors                      |
| Cg                             | wave celerity                                                 |
| C <sub>12</sub>                | cospectrum value                                              |
| d                              | total water depth                                             |
| d <sub>b</sub>                 | breaking wave depth                                           |
| E                              | wave energy density                                           |
| F                              | complex Fourier coefficient                                   |
| fn                             | discrete frequency value                                      |
| GB,GBP                         | ratio of rms breaking wave height to breaking wave depth      |
| g                              | acceleration of gravity                                       |
| н <sub>ь</sub>                 | breaking wave height                                          |
| i,j                            | counting indexes                                              |
| Kz                             | dynamic pressure response factor                              |
| k                              | wave number                                                   |
| L                              | wavelength                                                    |
| ٤                              | sensor spacing                                                |
| m                              | index to account for gage number                              |
| N                              | total number of discrete data points                          |
| n                              | frequency number, argument of Fourier series coefficients     |
| Pls                            | longshore energy flux at the surf line                        |
| P                              | pressure time-series values                                   |
| P                              | dynamic pressure                                              |
| Q <sub>12</sub>                | quad-spectrum value                                           |
| R                              | ratio of unwindowed energy density to windowed energy density |
| S <sub>12</sub>                | complex cross-spectrum value                                  |
| T                              | length of time series record                                  |
| T <sub>HF</sub>                | high frequency cutoff period                                  |
| W                              | weighting coefficient                                         |
| z                              | water surface elevation                                       |
| β                              | gage orientation angle                                        |
| Y                              | specific weight of seawater                                   |
| Θ                              | wave direction                                                |
| ∆d                             | average mean depth of water overlaying pressure sensors       |
| Δf                             | frequency step                                                |
| Δt                             | time step                                                     |
| ω                              | angular wave frequency                                        |

6

#### COMPUTER ALGORITHM TO CALCULATE LONGSHOKE ENERGY FLUX AND WAVE DIRECTION FROM A TWO PRESSURE SENSOR ARRAY

bu

Todd L. Walton, Jr. and Robert G. Dean

#### I. INTRODUCTION

The documented (FORTRAN IV programing language) computer program discussed in this report was originally written as part of the Coastal Engineering Research Center's (CERC) Longshore Sand Transport Research Program and was used in analysis of wave data collected at Channel Islands Harbor in conjunction with a study of sand transport at Channel Islands Harbor as discussed in Bruno, et al. (1981).

The program performs the basic analysis of two wave gage pressure records necessary to compute wave direction and wave energy at a given frequency and computes the longshore energy flux used in sand transport for the entire energy spectrum of the wave record. This program uses linear wave theory for the wave transformation process and includes the assumption of straight and parallel bottom contours necessary for application of Snell's law of refraction.

Necessary steps in the analysis of the wave data are presented in Sections II and III of this report. Subroutines are discussed and sample outputs for some wave records from the Channel Islands wave gage pressure sensor pair are given.

The program presently accepts data in the standard CERC magnetic-tape format where record lengths consist of 4,100 values. The first four values are the gage number and the date-time group, and the remaining 4,096 values are the pressures recorded in thousandths of a foot (head) of water at 0.25-second intervals. Should other input data be available, the program could easily be modified to accept the data by simple changes in the main program and in subroutines BUF and SWITCH.

Sample outputs have been presented for real wave data; some wave directional information cannot be obtained for all frequencies because the spectral information at some frequencies is ill-conditioned. The percent of energy for which this problem occurs is a small part of the energy (usually <3 percent) of the entire spectrum and is insignificant in energy-flux computations. Reasons for this feature are discussed later.

#### II. METHODOLOGY

Calculating the longshore energy flux at breaking required the following steps:

(1) Calculation of the frequency-by-frequency wave direction and energy at the location of the wave gages;

(2) determination of the breaking wave depth;

(3) transformation of the wave spectrum to the "breaker" line, including shoaling and refraction effects; and

(4) computation of  $"{\rm P}_{\rm LS},$  " the longshore energy flux at the surfline.

Each of the steps is described below.

#### 1. Calculation of Wave Direction and Energy Spectrum at Wave Gages.

As noted previously, each of the input time-series pressure records consists of 4,096 data points with a time increment of 0.25 second. To reduce computational costs, modified time series are formed for analysis by averaging four adjacent data points. These new time series contain 1,024 data points spaced at 1.0-second intervals. This increases the aliasing period from 0.5 to 2.0 seconds; however, this is justified as the pressure response factor for a water depth of 6 meters and a wave period of 2 seconds is approximately 0.005.

The time series are analyzed using a standard fast Fourier transform (FFT) program to determine the coefficients. For example, for pressure time series from gage 1

$$P_{1}(j) = \sum_{n=0}^{N-1} [a_{1}(n) - ib_{1}(n)] \exp\left(\frac{i2\pi n j}{N}\right)$$
(1)

in which  $i = \sqrt{-1}$  and N is the total number of data points,  $T/\Delta t = 1,024$ , where T is the time series record length of 1,024 seconds,  $\Delta t$  the time increment of 1 second between samples, and j a discrete time  $t_j$  where  $t_j = discrete$  time value =  $j\Delta t$ . The FFT coefficients are defined in terms of the pressure time series as

$$a_1(n) - ib_1(n) = \frac{1}{N} \sum_{j=0}^{N-1} P_1(j) \exp\left(-i \frac{2\pi n j}{N}\right)$$
 (2)

where the argument "n" of the Fourier coefficients a(n) and b(n) specifies the quantity to be a discrete function of wave frequency,  $f_n$ , where  $f_n$ , a discrete frequency value, is  $n\Delta f$  (where  $\Delta f = 1/T$ ) and the  $a_1(0)$  term represents the mean value of the time-series pressure record for wave gage 1. Similar relationships exist for wave gage 2. In calculating the FFT coefficients, there are several options that may be employed in an attempt to reduce spectral leakage which arises due to representing an aperiodic time series by a periodic series. A large number of possible data windows (weighting functions for data) have been developed to reduce the adverse effects of spectral leakage (Harris, 1974). These can be expressed in the form of a weighting function w(j), such that the modified time series p'(j) is of the form

$$p'(j) = w(j) p(j)$$

in which p(j) is the digitized measured pressure value at time  $t_j = j\Delta t$ , and w(j) a weighting function. A characteristic of these weighting functions is that they are equal to unity at the midpoint of the time series and decrease to a lesser value near the two ends. In the present program, a "cosine bell" weighting function is used; however, through comparisons of  $P_{g,s}$  with and without this function, it was established that the effect of the weighting function is expressed by

$$w(j) = \frac{1}{2} \left( 1.0 - \cos \frac{2\pi j}{N} \right)$$
(3)

It is clear that the application of a weighting function will reduce the total energy in the record. This effect is partly compensated for by the following equation:

$$p''(j) = \sqrt{\frac{\langle p^2 \rangle}{\langle p^* \rangle}} p'(j)$$
(4)

thereby ensuring the same total energy in the altered and original time series, where  $\langle p^2 \rangle$  is the mean square value of the original time series and  $\langle p^{\,\prime 2} \rangle$  the mean square value of the weighted time series. It is the altered time series p"(j) that is subjected to FFT analysis. The primes will be dropped hereafter for convenience. The average mean depth of water overlying the pressure sensors,  $\Delta d$ , is obtained by averaging the m time series to obtain  $a_m^{\,}(0)$ . For two separate time series records, m = 1, 2 (wave gages 1 and 2),

$$\Delta d = 0.5 [a_1(0) + a_2(0)]$$
(5)

The total water depth, d, is the sum of  $\Delta d$  and the distance, B, of the pressure sensors above the bottom (in later examples  $B \simeq 0.76$  meter).

Each FFT pressure coefficient is transformed to a water surface displacement coefficient by the following linear wave theory relationship discussed in the Shore Protection Manual (SPM) (see Ch. 2, U.S. Army, Corps of Engineers, Coastal Engineering Research Center, 1977):

water surface coefficients

dynamic pressure coefficients

$$[a_{m}(n), b_{m}(n)]_{\eta} = \frac{1}{\gamma K_{z}(n)} [a_{m}(n), b_{m}(n)]_{p}$$
(6)

in which the subscripts  $\eta$  and p denote water surface and dynamic pressure coefficients, respectively. The factor

$$K_{z}(n) = \frac{\cosh k(n) B}{\cosh k(n) d}$$
(7)

where  $\gamma$  is the specific weight of fluid (seawater) and is included when pressure coefficients are in normal units of pressure (i.e., N/M<sup>2</sup> or equivalent). In equation (7), B represents the distance of the pressure sensors above the bottom and k(n) is the wave number associated with the angular frequency,  $\omega(n) = (2\pi n\Delta f)$ , as obtained from the linear wave theory dispersion relationship

$$\omega(n)^2 = gk(n) \tanh k(n) d \tag{8}$$

One of the disadvantages of measuring waves with near-bottom pressure sensors is evident by examining equations (6) and (7). For the higher frequencies (shorter wave periods)  $K_z(n)$  is very small which means that the higher frequency waves result in very small pressure fluctuations near the sea floor. Thus, to avoid contaminating the calculated water surface displacements, it is

usually necessary to apply a high frequency cutoff, above which the pressure contributions are discarded. The proper selection of this high frequency cutoff depends on the signal to noise characteristics of the pressure sensor and the signal conditioning system. In the present program, the high frequency cutoff was established at a wave period of 3.0 seconds. Wave gage analyses by Thompson (1980) have shown that a 3.0-second high frequency spectral cutoff value provides reasonable estimates of total wave energy at west coast (U.S.) locations.

Denoting hereafter the FFT coefficients for the water surface as a(n) and b(n), it is noted that the coefficients have the following properties:

$$\langle n^2 \rangle = \sum_{n=1}^{N-1} [a^2(n) + b^2(n)]$$
 (9)

$$a\left(\frac{N}{2}+n\right) = a\left(\frac{N}{2}-n\right) \tag{10}$$

$$b\left(\frac{N}{2}+n\right) = -b\left(\frac{N}{2}-n\right)$$
(11)

and thus

$$\langle \eta^2 \rangle = 2 \sum_{n=1}^{N/2} [a^2(n) + b^2(n)]$$
 (12)

Thus, the total (kinetic and potential) energy E(n) associated with a particular wave frequency component, n, is

$$E(n) = 2\gamma[a^2(n) + b^2(n)]$$
(13)

Now consider two wave or pressure sensors located at  $(x_1, y_1)$  and  $(x_2, y_2)$  (see Fig. 1). The results will be developed considering discrete frequencies.



Figure 1. Definition sketch for two sensor array.

The water surface displacement consistent with the assumption of one direction per frequency is

$$n(x, y, j) = \sum_{n=0}^{N-1} F(n) \exp \{i[n\omega_1 t - k_x(n) x - k_y(n) y]\}$$

$$= \sum_{n=0}^{N-1} [a(n) - ib(n)] \exp\left(\frac{i2\pi nj}{N}\right)$$
(14)

where  $\omega_1$  is the primary analysis frequency (=  $2\pi/\text{record}$  length =  $2\pi/\text{T}$  =  $2\pi\Delta f$ ), and  $\Theta(n)$  the direction of wave propagation at frequency  $\omega(n) = n\omega_1$ . The wave number components,  $k_{\chi}(n)$  and  $k_{y}(n)$ , are expressed in terms of the wave number, k(n), and wave direction,  $\Theta(n)$ , as

$$k_{v}(n) = k(n) \cos \Theta(n)$$
(15)

$$k_{v}(n) = k(n) \sin \Theta(n)$$
(16)

The cross spectrum,  $S_{12}(n)$ , of the two measured water surface displacements (or dynamic pressures) is given by

$$S_{12}(n) = |F(n)|^2 \{ \exp -i [k(n) \cos \Theta(n)(x_2 - x_1) + k(n) \sin \Theta(n)(y_2 - y_1) ] \}$$
(17)

Denoting the separation distance and angle as  $\ell$  and  $\beta$ , respectively, the cross spectrum can be expressed as (see Fig. 1)

$$S_{12}(n) = |F(n)|^2 \{\cos [k(n) l \cos (\theta(n) - \beta)] - i \sin [k(n) l \cos (\theta(n) - \beta)] \}$$
  
= cospectrum (n) - i quad-spectrum (n) (18)  
= C\_{12}(n) - iQ\_{12}(n)

Thus, from equation (18), the wave direction  $\Theta(n)$  associated with each wave frequency can be expressed as

$$\Theta(n) = \beta \neq \cos^{-1} \left\{ \frac{1}{k(n) \ \ell} \tan^{-1} \left[ \frac{Q_{12}(n)}{C_{12}(n)} \right] \right\}$$
(19)

The above relationship has two roots, one of which must be selected based on physical considerations of the most likely direction of wave propagation. In the present case, assuming no wave reflection from the beach, the ambiguity in wave direction is ruled out; for wave sensors nearly parallel to the beach, the minus sign in equation (19) is appropriate.

There are two conditions for which it was not possible to calculate the wave directions  $\Theta(n)$ . These include poorly conditioned wave data, presumably due to spectral leakage, and spatial aliasing due to large separation distance between the two gages. If the data are poorly conditioned for determining wave direction, the absolute value of the quantity within the brackets  $\{-\}$  in equation (19) may exceed unity, a physically impossible condition since the extreme values of the cosine function are ±1. This tends to occur for the extremely long waves for which the energy is small and the value of k(n) is also small, the latter tending to result in large values of the bracketed quantity. The percentage of energy for which this condition occurred in the analysis of one year's wave data collected at Channel Islands Harbor was relatively small, averaging 2 to 3 percent with a maximum of approximately 10 percent. The second condition is related to spatial aliasing and requires that one-half the wavelength be equal to or greater than the projection of the wave gage separation distance in the direction of wave propagation. Referring to Figure 1.

$$L > 2\ell \left\{ \cos[\Theta(n) - \beta] \right\}_{max}$$
(20)

which indicates that for the least adverse effects of spatial aliasing, the gages should be on an alinement parallel to the dominant orientation of the wave crests. As will be discussed later, in calculating  $P_{ls}$  an attempt was made to account for this effect of aliasing by augmenting the calculated values, illustrated as follows by

$$(P_{ls})_{cm} = (P_{ls})_{c} \frac{E_{TOT}}{E}$$
(21)

in which the subscripts c and cm indicate calculated and calculated modified, respectively.  $E_{\rm TOT}$  and E represent the total wave energy values and the wave energy not affected by spatial aliasing or poorly conditioned wave data, respectively. The total wave energy is that energy in the wave spectrum below the high frequency spectral cutoff value.

#### 2. Transformation of Wave Spectrum to Breaker Line.

At this stage, the wave energy and wave direction in the vicinity of the gages are determined. These values are then transformed to the breaker line accounting for wave refraction and shoaling.

To determine the wave breaking depth, the onshore-directed energy flux is calculated in accordance with the expression (based on Snell's law of refraction) and equated to an equivalent expressed in terms of wave characteristics at breaking.

Onshore energy flux = 
$$\sum_{n=1}^{N/2} \gamma 2 [a(n)^2 + b(n)^2] C_g(n) \cos \Theta(n)$$
  
=  $\frac{\gamma E_b^2}{8} C_{gb} \cos \Theta_b$  (22)

Assuming that the breaking wave angle,  $\Theta_b$ , is small, that the waves will break under shallow-water conditions, and that the ratio of breaking wave height to depth is a constant, the breaking wave height,  $H_b$ , is then given by

$$H_{b} = \left\{ \sum_{n=1}^{N/2} 16 \left[ a(n)^{2} + b(n)^{2} \right] C_{g}(n) \cos \Theta(n) \right\}^{0.4} \left( \frac{GB}{g} \right)^{0.2}$$
(23)

where GB is the ratio of root-mean-square (rms) breaking wave height to breaking depth, GB =  $H_b/d_b$  (here assumed GB = 0.78). With the breaking depth known, each wave component is transformed to shore accounting for both wave refraction and shoaling based on linear wave theory.

Wave refraction is in accordance with Snell's law and the assumption that straight and parallel contours existed between the gage and breaking locations

$$\Theta_{b}(n) = \sin^{-1} \left[ \frac{C_{b}}{C_{r}(n)} \right] \sin \Theta_{r}(n)$$
(24)

where C is linear wave celerity (see the SPM, Ch. 2) in which the r subscripts denote the "reference (gage)" location.

With the wave energy and direction now known at the breaker line, the value of the longshore energy flux,  $(P_{1s})_{cm}$ , is readily determined

$$(P_{ls})_{cm} = R(P_{ls})_{c}$$

$$= R \left\{ 2\gamma \sum_{n=1}^{N/2} [a^{2}(n) + b^{2}(n)]_{b} [C_{g}(n)]_{b} [\cos \Theta(n) \sin \Theta(n)]_{b} \right\}$$
(25)

in which the factor R is given by the ratio

$$R = \frac{E_{TOT}}{E}$$

as defined in and discussed in relation to equation (21).

#### III. MAIN PROGRAM DOCUMENTATION

The detailed programing steps in analysis for the longshore energy flux,  $(P_{\ell,S})_{\rm Cm}$ , (which in this program is calculated in terms of rms wave height) are presented in this section. Program steps are numbered to correspond to areas in the program listing where computations are carried out. A program listing with corresponding numbered steps follows the program documentation. Note that preceding text has used the indexes j and n for time and frequency, respectively, while the program which follows uses the index I for both time and frequency. A listing of the main program is presented in Figure 2. Program steps are as follows and refer to numbered parts of main program listing:

| 1   | c<br>c           | PROGRAM SPECT(INPUT,OUTPUT,TAPES=INPUT,TAPES=OUTPUT,TAPES)<br>Cumputor algorithm to calculate longsmore energy flux factor and wave<br>Direction for two pressure sensor arkay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5   | ĉ                | MAIN PRUGRAM<br>PRUGRAM IS PRESENTLY SET UP TU TAKE A TIME SERIES OF 1024 POINTS IN MAIN<br>DIMENSION ((512)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     |                  | DIMENSION FIR(1024)+FII(1024)+F2R(1024)+F21(1024)<br>UIMENSION SIGMA(512)+FMODSQ(518)+THEIA(512)<br>DIMENSION CI2(512)+012(512)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 10  |                  | DIMENSION W(1024)<br>DIMENSION CG(512)+BINTHB(512)<br>REAL MEANI,MEAN2<br>LOGICAL END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15  | c 101            | DATA END/,FALBE./<br>FUHMAT(10(2X+FS,2))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     |                  | DEFINITIONS-FIXED VAMIABLES<br>Kalkpunential pomer defining numger uf time behies pointa=(2**k)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 50  |                  | S#SPACING BETWEEN WAVE GADES (PEET)<br>Delit#Time BTEP BETWEEN POINTS IN AVERAGED TIME BERIES (SECONDS)<br>BETA #ANGLE DIFFRENCE BETMEEN WAVE GAGE ALIGMMENT AND SHORELINE(RADIANS<br>SLOPE#SLOPE OF BEACH AT PUINT OF WAVE BREAKING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 25  | ç                | GAMMA#SPECIFIC WEIGHT OF FLUIO (L85/F1#43)<br>B#DIBTANCE OF PRESSURE SENSORS ABOVE BOTTOM (FEET)<br>G#ACCELEKATION OF GRAVITY (FEET/SEC##2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     | с .<br>с         | GB#RATIO BREAKING WAVE HEIGHT/DEPTH FOR LINEAR THEORY COMPUTATION<br>OF wave height<br>GB#Paratu breaking wave height/depth for linear theory computation of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 30  | Ċ<br>C<br>C      | WAİER DEPTH GIVEN BREAKING MÄVE HEIGHT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 35  | ĊĊĊ              | DEFINITIONS=FLDATING VARIABLES<br>Avgi=Average of time Seriesi<br>Avg2=Average of time Series 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     | с<br>с<br>с      | C(1)=WAVE CELERITY<br>Cla(1)=COSPECTRA OF SERIE01=2<br>CB#BREAKING WAVE CELERITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 40  |                  | LG(1)=URUUP WAVE CELENITY<br>CNTL(1)=URUOPA DOINT TIME SENIES BEFORE AVERAGING<br>DEPTH=DEPTH UF WATEN AT GAGE SITE FRUM AVERAGES UF GAGES 1 AND 2<br>F11(1)=UNDEFINED/COMPLEX INAGINARY PUNTION OF TRANSFORM<br>F11(1)=TIME SERIES DATA GAGE1/COMPLEX REAL PURTION OF TRANSFORM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 45  | 0 0 0 0          | F2I(I)#UNDEFINED/COMPLEX IMAGINARY PURTIUN OF TRANSFORM<br>F2M(I)#TIME BERIES DATA GAGE2/COMPLEX REAL PURTION OF TRANSFURM<br>FMDDSq(I)#TIME SERIES AMPLITUDE MODULUS SQUARED<br>HB#RHEAKING MAYE MEIGHT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| \$0 |                  | IACIJESOOO POINT DATA GRUUP AND TIME BENIES RECURD<br>PLNEGENEGATIVE CUNTRIRUTIUN TU LUNGSMUHE ENERGY FLUX FACTOR<br>PLNETENET LUNGSNURE EVERGY FLUX FACTOR<br>PLPOBEDGITIVE CUNTRIKUTIUN TU LUNGSMUHE ENERGY FLUX FACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 55  |                  | WIZ(I)=UUADSPECTRA OF SERIES I=2<br>H=SCALING FACTOR FOR SCALING UP ENERGY OF NONUSABLE<br>Purtions of directional specific formations of the series of the same second s |
|     | C<br>C<br>C      | RATIUZENATU OF ENERGY/WINDUWED ENERGY FUR GAGE 2<br>REAL(I)#1024 POINT TIME SERIES AFTER AVENALING<br>HN#RATIO OF GROUP WAVE CELERITY TO WAVE CELERITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 60  | 0<br>0<br>0<br>0 | MSHRAUBPERCENT OF ENERGY BEYUNU SPACIAL ALIASING FREUUENCY<br>HSLFRG≣PERCENT OF ENERGY BELUN LOW FREUUENCY CUTUFF<br>HSUDU≣FERCENT UF INCUMENENT ENENGY<br>SMFREUBBUM UF ENERGY MITH FREUÜENCIES ABOVE SPACIAL<br>Aliasing Eveniegy cutofe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 65  | с<br>с<br>с      | SIG2#SUMMATION OF ONSHORE ENERGY FLUX<br>SIGMA(1)#FRADIAL FREQUENCY<br>SLFREQ#SUM OF ENERGY WITH FREQUENCIES BELOW LOW FREQUENCY CUTOFF<br>SUDDESUM OF FNERGY WITH FREQUENCIES BAUING INCOMEDENT WAVE OTDECTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 70  | 000              | SUMENISUM OF SQUARES OF TIME SEMIES 1 WITHOUT AVERAGE<br>SUMISSUM OF SQUARES OF TIME SEMIES 1 WITHOUT AVERAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     |                  | SUMF2#SUM OF SUDAMES OF TIME SERIES 1 WITH AVENAGE<br>SUMF2#SUM OF SUDARES OF TIME SERIES 2 WITH AVENAGE<br>Tewave Period<br>Theta(1)#Wave direction in Hadians                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

Figure 2. Listing of main program.

| 75         | C<br>C<br>C | THETABBBHEAKING WAYE ANGLE<br>WSUM1#SUM OF SQUARES OF DATA WINDDW HODIFIED TIME SERIES 1<br>WSUM2#SUM OF SQUARES OF DATA WINDDW HUDIFIED TIME SERIES 2<br>P1#3,14159265<br>THUP1#2.0491 |
|------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 80         |             | N=10<br>N=2.**K<br>S=00<br>DELTI=1.00<br>BETA=1.5708                                                                                                                                    |
| 35         |             | SLOPE=0,05<br>GAMMA=60,0<br>B=2.5<br>M=N=1<br>ND2=N/2                                                                                                                                   |
| <b>9</b> 0 |             | GB#0,78<br>G=32.2<br>GRP=0.78                                                                                                                                                           |
|            | ç           | HIGH FRED CUTOFERT.O SEC                                                                                                                                                                |
| 95         | č           | SPACIAL ALIASING CUTOFF#3.4 SEC                                                                                                                                                         |
|            | Ć           | NLOWALOW FREQUENCY CUTOFF NUMBER                                                                                                                                                        |
|            | ç           | NYFREMIGH FREQUENCY CUTOFF NUMBER                                                                                                                                                       |
|            | ç           | NSALFRESPACIAL ALIABING FREQUENCE CULUPP NUMBER                                                                                                                                         |
| 100        | č           | ANERGENET COLOFY NONDERSTAND CONSERVED FENDING COLOFY CONSERVED                                                                                                                         |
|            | •           | NLOw=50                                                                                                                                                                                 |
|            |             | NYFR=342                                                                                                                                                                                |
|            |             | NSALFK#301<br>NSM1#NSA1FD_1                                                                                                                                                             |
| 105        | 110         | CUNTINUE                                                                                                                                                                                |
|            |             |                                                                                                                                                                                         |
|            | ç           | INITIAL TETNE VALUES                                                                                                                                                                    |
|            |             |                                                                                                                                                                                         |
|            |             | SUDO=0.0                                                                                                                                                                                |
| 110        |             | SMFREGEO.0                                                                                                                                                                              |
|            |             | 8UM1=0.                                                                                                                                                                                 |
|            |             | SUM2=0.                                                                                                                                                                                 |
|            |             | SUMF1=0.                                                                                                                                                                                |
|            |             | SUMF 2mg.                                                                                                                                                                               |
| 113        |             | wSUM1=0.0                                                                                                                                                                               |
|            |             | WSUM2=0.0                                                                                                                                                                               |
|            |             | VAC300"0                                                                                                                                                                                |
|            |             |                                                                                                                                                                                         |
| 120        |             | PLP08=0.0                                                                                                                                                                               |
|            |             | PLNEG=0.0                                                                                                                                                                               |
|            |             | FLNE1#0.0                                                                                                                                                                               |
|            |             | 00 29 I=1.N                                                                                                                                                                             |
| 125        |             | F11(1)=0,0                                                                                                                                                                              |
|            |             | F21(1)=0.0                                                                                                                                                                              |
|            | 29          | CUNTINUE                                                                                                                                                                                |
|            |             | FMUDSQ(1)=0.0                                                                                                                                                                           |
| 130        | 30          | CONTINUE                                                                                                                                                                                |
|            |             |                                                                                                                                                                                         |
|            | ç           | THE DEPART OF DECEME DEADS IN MAVE PRESSURE VALUES INTO FIRAFER ARRAYS                                                                                                                  |
|            | C           | AND ASSURES MATCHING DATE GROUPS FOR DIRECTIONAL WAVE ANALYSIS OF TWO                                                                                                                   |
|            | č           | GAGES, TATAL THE THE THE THE THE                                                                                                                                                        |
| 135        |             | CALL BUF(MGAGE1.MONTH1.MOAY1.MTIME1.FIN                                                                                                                                                 |
|            |             | CALL RUF (MGAGE2. MUNTH2. HDAY B. MIIME2. F2H . IDATE2. END)                                                                                                                            |
|            |             | IF(ENU) GD TO 1                                                                                                                                                                         |
|            |             | IF(IUATE1.E0.IDATE2) GD TU 120                                                                                                                                                          |
|            |             | Complement                                                                                                                                                                              |
|            |             |                                                                                                                                                                                         |

Figure 2. Listing of main program.--Continued

| 140 | BACKSPACE 9<br>GU TU 110<br>120 CONTINUE                                                                                                                                                                                                    |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 145 | ARTHORNELLARESIL) CALL BAILTHARAGELARGAGEZARIK APER )<br>WRITE(6+426)<br>426 FURMAT(///I GAUGE NU. (+6X+(MUNTH(+TX+(CAY(+8X+(TIME()<br>WRITE(6+1))MGAGEL+MONTH(+MAX)+MTIMEL                                                                 |
|     | WHITE(6,11)MGAGE2,MONTH2,MDAY2,MTIME2<br>11 FUHMAT(17,3(5%,17))                                                                                                                                                                             |
| 150 | THIS PORTION OF PROGRAM CALCULATES WATER DEPIH AT WAVE GAGES AS WELL AS<br>AVEHAGES AND SUM OF SQUARES OF TIME BERIES<br>OD 43 Taily                                                                                                        |
| 155 | A UGI mavGI+FIR(1)       42 A VG2mavG2+F2R(1)       A VG1mavG1/FLOAT(N)       A VG2mavG2/FLOAT(N)                                                                                                                                           |
| 160 | DEPTH=(AVG1+AVG2)/2.+8<br>CALL HFC(DEPTH;8:0ELTT;N:N8ALFM)<br>OU 41 Imi;N<br>F1H(1)=F1R(1)=AVG1                                                                                                                                             |
|     | 8UM1=8UM1+F1R(J)**2.<br>8UM2=8UM2+F2R(J)**2.<br>41 LONTINUE                                                                                                                                                                                 |
| 165 | SUM1#SUM2/FLUAT(N)<br>SUM2#SUM2/FLUAT(N)                                                                                                                                                                                                    |
| 170 | THIS PORTION OF PHUGHAM APPLIES DATA WINDOW TO TIME SERIESDATA WINDOW<br>VALUES ARF REPRESENTED BY W(Ì)<br>DU B9 Imi,N<br>W(I)=0.5*(1.0-CHS(TWUPI*FLUAT(I)/FLUAT(N)))                                                                       |
|     | FIR(I)=(FIR(I) )*W(I)<br>F2R(I)=(F2R(I) )*W(I)<br>A9 CUNTINUE                                                                                                                                                                               |
| 175 | THIS PORTION OF PROGRAM COMPUTES SUM OF SQUARES OF DATA WINDOW MODIFIED<br>Time Beries as well as ratio of pre windowed energy to windowed energy<br>OU 43 Iml.N                                                                            |
| 180 | <pre>%5UM1=#sUM1+F1R(1)**2。<br/>#5UM2=#sUM2+F2R(1)**2。<br/>43 CUNTINUE<br/>#5UM1=#sUM1/FLOAT(N)<br/>#5UM2=#sUM2/FLOAT(N)</pre>                                                                                                              |
| 185 | HAIIU]#SUMI/WSUMI<br>HAIIU2#SUM2/WSUM2<br>CALL FFT(F]R*FII*K*0)<br>CALL FFT(F2R*F2I*K*0)<br>MEAN2#F2R(1)                                                                                                                                    |
| 140 | THIS PURTION OF PROGRAM CALCULATES CO AND QUAD SPECTRA VALUES, AS WELL AS<br>Mave angle to shoreline and energy contributions of each frequency,<br>bheaking mave height and bheaking wave celerity are also<br>calculated by this section. |
| 195 | 1=1<br>00 97 J=2,N<br>FIR(1)=F1R(J)<br>FII(1)=F1I(J)                                                                                                                                                                                        |
| 005 | +2M(1)=F2R(J)<br>F21(1)=F2I(J)<br>I=I+1<br>97 CONTINUE<br>00 9 I=I+M                                                                                                                                                                        |
|     | SUMF1=SUMF1+F1R(1)**2.+F11(1)**2.<br>Figure 2. Listing of main programContinued                                                                                                                                                             |

| 205  |      | SUMF2=SUMF2+F2R(I)++2,+F2I(I)++2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | 90   | CUNTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      |      | SUMFIESUMFIEMFANIES.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      |      | SUPPERSUPPERMENTE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |      | WRITE(6+2A9]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 210  | 289  | FURMAT(//+7x+(I(+10x+(SIGMA(1)(+11x+(FMDBQ(I)))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      |      | 00 99 T=1-NO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      |      | els(r)s.lk(l)+.Sk(l)+.lt(r)+.st(l)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |      | Q12(1)=F1R(1)+F2I(1)=F2R(1)+F1I(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |      | SIGMA(I)=FIUAT(I)+TWUPT/(FLDAT(N)+DFLTT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 215  |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 512  |      | 1-1H0F1/016HA(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|      |      | GALL WVLEN(DEPTH.T.XKH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      |      | XK=XKH/DEPTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      |      | IF(C12(1)) F-0.000000011 G0 TU 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      |      | POP/1 //YEARING ATAN/DISC/TI//CIS/TIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 220  |      | IF(AB8(PD).GT.1.0) GU 10 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      |      | THETA(I)==ACOS(PD)+BETA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      |      | 60 TU 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      |      | THETACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | *3   | IncleCIJ=0+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      |      | GU TU 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 225  | 93   | THETA(1)=0.00001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|      | -    | AMUDSOLTIACIBLIARS ACTIVIARS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      |      | The second state in the second state second se |
|      |      | XVB3XKH48/DFh1H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      |      | XKP=CUSH(XKB)/CDSH(XKH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      |      | FMUDSU(I)#FMDDSD(I)/(XKP##2.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 270  |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 230  |      | rivb3d(1)=Pilb5b(1)+Raf101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      |      | SUDD#SUDD+FMUDSG(I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |      | WRITE(0.105)I.SIGMA(I).FMUDSU(I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|      | 105  | FURMAT(31.15.51.F12.6.71.F18.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      | 105  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      | 46   | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 235  |      | FMUD80(I)#F1k(I)++2++F1I(I)++2+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      |      | XKBRAKHABZOEPTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      |      | XKPaCUBuCXXB3 (COBHCXXH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      |      | PHUDSG(1)=PHDDSG(1)/(AKP+72.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      |      | FMUDSQ(I)=FMUDSQ(I)=RATID1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 240  |      | RN#0.5+(1.+2.+XKH/8INH(2.+XKH))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -    |      | CG(T) ROTCHAFT) ODERTHARN /YKH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|      |      | CALL BIR WALL FUR FILL WALKAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      |      | C(I)=CG(I)/RN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      |      | MG2=(CG(I)+2,0+FMUDSU(I)+CO8(THETA(I)))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| c c  |      | SHG2=ONSHDRE FNERGY FLUX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 245  |      | SHG288HG34HG2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 247  |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      |      | SOUGUESOPENAPPHODSO(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      |      | IF(I.GE,NSALFR) GO TU 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      |      | GO TO YA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      |      | SHEPED-BURDENARMODOC/TY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      | - 17 | Shir heusen reuser house (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 250  | 78   | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      |      | IF(I.LE.NLOW) GO TO 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      |      | GO TO 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      | - 11 | arrea-orreasenousa(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      | 76   | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 255  |      | 1F(1.GE.NYFR) GD TO 999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      | 0.0  | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      | 444  | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      |      | 5HG2#5HG2#2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      |      | WRITE(6+351)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 34.0 | 751  | FORMAT/ / / V. / T / . SHY . INTOMATTS F POT /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 200  | 321  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      |      | nn de Televins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|      |      | IF(I.GE.NBALFR) GD TO 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      |      | PCT=FMODSQ(1)/SUMEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |      | IF(PCT GE & ADE) GO TO #9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 203  |      | 00 10 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | 49   | WRITE(6+50)I+BIGHA(I)+PCT+THETA(I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      | 50   | FURMAT(3x+15+3(3x+F16+8))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | 48   | CUNTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | 40   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      | 44   | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

Figure 2. Listing of main program .-- Continued

| 270  | 57         | HB#(B.***'4)*(8H65**'4)*(8A'C)**'5<br>CP#(0*HB/0HP)**'2<br>CNulive                                                                                    |
|------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | ç          | THIS PURTION OF PROGRAM MUDIFIES HAVE GAGE ANGLES TO BREAKING HAVE ANGLES                                                                             |
| 277  | τ          | AND CUMPUTES LONGSHORE ENERGY FLUX FACTONS<br>DU 91 Im1.ND2<br>IF(1.GE.NSALFR) GO TO 998<br>SINTHF(1.BESINTHFTA(1))*CB/C(1)                           |
| 280  |            | THETAH=ABIN(SINTHB(I))<br>XKHS=((1.+SIN(THETA(I))**2.)/(1.=SINTHB(I)**2.))**.5<br>XKSSmCG(I)/CB<br>FMUSSU(1)#FMUSSG(I)*XKRS*XKSS                      |
| 3.05 |            | IF(THETA(1),LE,0,0) 60 TU 87<br>PLP03#PLP03+PLP03+GAMMA*SIN(2,*THETA8 )*C8+FM00SQ(1)                                                                  |
| 405  | 87<br>85   | GU TU BA<br>PLNEGEPLNEG+GAMMA*SIN(2.*THETAB )*C8*FHUD5Q(1)<br>CUNTINUE                                                                                |
| 290  | 91<br>998  | PLWEISHNET+PL<br>PLWEISHNET+PL<br>IF(I.GE,NYFR) GO TO 998<br>CONTINUE<br>CUNTINUE                                                                     |
| 295  |            | HSUDU=SODJSUHEN<br>HSHFRU=SHFREJ/SUHEN<br>HSLFHU=SLFREJ/SUHEN<br>HTUT#RSUD+HSHFRQ<br>HTI_T#RSUD+HSHFRQ                                                |
| 300  |            | PLPU8#PLPU\$4R<br>Plnetaplneg4r<br>Plnetaplnet4r<br>Write(6,201)nsalfr                                                                                |
| 105  | 500        | FURMAI(//*( NSALFHE(*24X*46)<br>WRITL(6*200)DEPTH<br>FURMAI(1 DEPTH OF WATER AT GAUGE SITE=(*F10,1)<br>WRITE/6*1001augi-aug2                          |
|      | 100<br>170 | FUMMAT(( AVG1=[+F11,]+9X+(AVG2=[+F11.3)<br>#RITE(6+170)30M1+80H2<br>FUMMAT(1 80M1=(FF11.3+9X+(80M2#[+F11.3)                                           |
| 310  | 111        | m=ITE(6+111)#8Un1+*SUM2<br>Fukmat(( #8Um1m=(*F10+3;9X*(#8UM2m=(*F10+3)<br>##ITE(6+112]#at1U1=Rat102                                                   |
|      | 39         | FUMMAT( ( MATIOIm (+F9.3,9X+ (MATIO2m (+F9.3)<br>MATTE(6.35)SUMEN<br>FUMMAT( ( SUMENA (+2X+F13.5)                                                     |
| 315  | 104        | MYIIE(6+104)HB<br>Format(( Bheaking wave height mb=[+6x+f10,2)<br>MyIte(6+108)CB                                                                      |
| 320  | 108        | FURMAT(1 BREAKING WAVE CELENITY CBmt,4%,F10,2)<br>white(6,106) rsodd,rsmfro,rstfng<br>Format(1 Rsuddmt,rf11,4,8% (KShfromt,F10,4,8%, (KSLFROm(,F10,4) |
|      | 103        | WRITE(6+103)PLPOS+PLNEG<br>FURMAT([ PLPUS=(+f11.4+8x+(PLNEG#[+f11.4)<br>WRITE(-103)PLNE(-f11.4+8x+(PLNEG#[+f11.4))                                    |
| 375  | 109        | FORWAT(( PLNET=1+F11+4)<br>GU TU 110<br>CUNTINUE<br>STOP<br>ENU                                                                                       |

Figure 2. Listing of main program.--Continued

(1) Input data for this program are in the form of digital magnetic-tape records of 4,100 values. The first 4 values of the records are the gage number, month, day, and time of the observations; the last 4,096 values are the time-series pressure values of the wave gage. In the present program the wave gage pressures are stored in thousandths of a foot (head) water at 0.25-second intervals. Subroutine BUF reads time-series data into array CNTL, where it is averaged to provide 1,024 time-series values of  $\Delta t = 1$  second spacing. Units are also divided by 1,000 to convert values to feet (head) of water.

(2) The date groups of record 1 and record 2 are compared to ensure that times of records are simultaneous; if the times are not, the program searches the record file until this condition is met. The two records are than checked for proper sequence to ensure that gage 1 is analyzed first. Subroutine SWITCH switches arrays if they are not in proper order.

(3) Each of the two 1,024 value time series is then analyzed for average values which are printed out along with the average depth of water at each gage site. The average value of each of the timeseries records is again averaged and is added to the height of the gages above the bottom to obtain the water depth:

$$DEPTH = \frac{AVERAGE 1 + AVERAGE 2}{2} + B$$

in which AVERAGE 1 is the average of time series  $1 = a_1(0)$ , AVERAGE 2 the average of time series  $2 = a_2(0)$ , and B the height of sensors above the bottom.

An option to apply a weighting function w(j) (= W(I) in program) has been incorporated before the FFT subroutine is called. In this particular program a cosine bell weighting function has been incorporated. If the data window option is selected, the two time-series data records, which are read into F1R and F2R arrays, are multiplied by the following weighting function (cosine bell)

$$w(j) = \frac{1}{2} \left[ 1 - \cos\left(\frac{2\pi j}{N}\right) \right]$$

where j is the time step number and N the number of data points in series. If no weighting function is desired in analysis set w(j) = 1.0, which is the "box car" weighting function.

As the cosine bell function reduces the total energy content of the waves, the final energy obtained from the FFT must be rescaled up to the proper value. This is accomplished by scaling up the timeseries pressure values by the ratio

$$R = \frac{\text{Unwindowed energy}}{\text{Windowed energy}} = \sqrt{\frac{\langle p^2 \rangle}{\langle p^{+2} \rangle}}$$

as discussed in equation (4).

(4) Cospectra and quad-spectra of the gages are computed using the following relationships (note in computer program index, I is used for frequency counter, n):

$$Cospectra = C12(I) = F1R(I)*F2R(I) + F1I(I)*F2I(I)$$

$$Quad-spectra = Q12(I) = F1R(I)*F2I(I) - F2R(I)*F1I(I)$$

in which F1R and F1I are the real and imaginary parts of complex transforms of time series 1: F2R and F2I are the real and imaginary parts of complex transforms of time series 2.

(5) Wave angle is calculated in accordance with equation (19).

$$\Theta(n) = \Theta = \frac{\beta}{\arccos ne} \left[ \frac{1}{k(n)\ell} \cdot \arctan \frac{Q12(n)}{C12(n)} \right]$$

where k(n) is the wave number calculated via linear wave theory,  $\ell$  the spacing of gages, and  $\beta$  the difference in alinement of gages and shoreline in Figure 1.

Due to energy leakage problems in spectra, impossible wave angles can result [wave angles with  $(1/k(n)\ell \arctan Ql2(n)/Cl2(n))$  greater than 1.0]. When this happens, energy is lumped into a separate category for later scaling up of the longshore energy flux.

(6) The high frequency cutoff in this particular program has been set at 2.09 radians per second, which corresponds to a period of 3 seconds or NYFR = 342. This value can be reset in the main program by adjustment of NYFR where

$$VYFR = \frac{N\Delta t}{T_{HF}}$$

and N is the number of data points in time series,  $\Delta t$  the spacing in time of data points, and  $T_{\rm HF}$  the high frequency cutoff period. The spatial aliasing frequency is computed in subroutine HFC.

Energy between the spatial aliasing frequency and the high frequency cutoff is put into a special category and used to scale up the final longshore energy flux.

(7) Each frequency contribution to the onshore energy flux is calculated for the gage site location as follows:

Onshore energy flux = 
$$2\gamma |F_{\eta}(n)|^2 C_g(n) \cos [\Theta(n)]$$

where

| F <sub>η</sub> (n) | =   | modulus of the complex amplitude spectra of wave<br>elevation above mean surface at gage site |
|--------------------|-----|-----------------------------------------------------------------------------------------------|
| C <sub>g</sub> (n) | = . | group wave speed at gage site                                                                 |
| Θ(n)               | =   | 0 = angle of wave direction (see Fig. 1)                                                      |
| γ                  | =   | specific weight of seawater                                                                   |

The onshore energy flux is then summed to obtain the total onshore energy flux. In the program, onshore energy flux/ $\gamma$  = HG2.

(8) Breaking wave height at the shoreline is determined from the mean square onshore energy flux via a linear theory wave transformation formula which can be simplified to

$$H_{b} = \left[\sum_{n=1}^{N/2} 16 |F_{n}(n)|^{2} C_{g}(n) \cos \Theta(n)\right]^{0.4} \left(\frac{GB}{g}\right)^{0.2}$$

where GB is the wave height-to-water depth ratio at breaking and g the acceleration of gravity.

The choice of GB is up to the user although a value of GB = 1.42 has been found by Komar and Gaughan (1972) to best fit wave tank data for breaking wave heights for monochromatic waves. In the present program, GB has been set equal to 0.78 but can be readily changed.

The breaking wave water depth is calculated from the equation

$$\frac{H_{b}}{d_{b}} = GBP$$

where  $d_b$  is the wave breaking water depth and GBP the ratio of wave height to water depth at breaking.

In this case a different value of the ratio of breaking wave height to water depth can be used in the program for obtaining the proper water depth. An assumed value of GBP = 0.78 from the solitary wave theory in the SPM is used.

Linear wave celerity is assumed and breaking wave celerity is estimated as

$$C_{\rm b} = \left( {\rm g} \frac{{\rm H}_{\rm b}}{{\rm GBP}} \right)^{0.5}$$

The breaking wave height and celerity calculated in this approach apply to all frequencies.

(9) Frequency-by-frequency modification of wave angles is made assuming linear wave theory, Snell's law, and parallel bottom contours offshore. The breaking wave angle,  $\Theta_{\rm b}(n)$ , is calculated from

$$\Theta_{b}(n) = \arcsin\left[\frac{C_{b}(n) \sin \Theta_{r}(n)}{C_{r}}\right]$$

where the subscript r refers to the reference gage location.

(10) Longshore energy flux is calculated for each frequency component (except the special cases discussed in Sec. II) using the equation

$$P_{ls}(n) = \gamma |F_n(n)|^2 C_{gb}(n) \sin 2\Theta_b(n)$$

and is summed up to obtain a net longshore energy flux.

(11) The value of the net longshore energy flux is multiplied by a factor R which scales up the total energy in the spectrum (below the high frequency cutoff). The equation for scaling factor R is

$$R = \frac{1}{(1 - RTOT)}$$

where RTOT = RSODD + RSHFRQ when RSODD is the percent of energy in low frequency bands for which impossible values of the cosine function are calculated, and RSHFRQ is the percent of energy between spacial aliasing frequency and high frequency cutoff.

The final result of analysis of the two gage records for the net longshore energy flux PLNET is printed out, as well as specific frequencies for which impossible directional results occur and frequencies at which more than 2.5 percent of the total wave energy is found.

#### **IV. SUBROUTINE DOCUMENTATION**

#### 1. FFT Subroutine.

The sampled time function, f(j), will be expressed as

$$f(j) = \sum_{n=0}^{N-1} F(n) \exp(in\omega_1 j \Delta t)$$

in which

$$\omega_{1} = \frac{2\pi}{\text{record length}} = \frac{2\pi}{T} = \frac{2\pi}{N\Delta t}$$

$$t_{j} = j\Delta t = a \text{ discrete time where } j \text{ is the integer time step}$$

$$F(n) = a(n) - ib(n)$$

$$a\left(\frac{N}{2+n}\right) = a\left(\frac{N}{2-n}\right) , n \neq 0 , \frac{N}{2}$$

$$b\left(\frac{N}{2+n}\right) = -b\left(\frac{N}{2-n}\right) , n \neq 0 , \frac{N}{2}$$

$$a(0) = \text{mean of sampled record}$$

$$b(0) = b\left(\frac{N}{2}\right) = 0$$

Because negative indexes are not readily handled by most FORTRAN compilers, the summation extends over the interval  $0 \le n \le N - 1$ , rather than over the symmetric interval  $-N/2 \le n \le N/2$ . From the definition of the coefficients above, it is clear that the coefficients a(n) and b(n) for n > N/2 contain no additional information.

The inverse relationship completing the FFT pair is

$$F(n) = \frac{1}{N} \sum_{j=1}^{N} f(j) \exp(-in\omega_{j} \Delta t)$$

As an enumeration of the complex FFT coefficients, suppose the series of 8 values is considered, N = 8. The coefficients would be

$$F(0) = a(0)$$

$$F(1) = a(1) - ib(1), F(7) = a(7) - ib(7) = a(1) + ib(1)$$

$$F(2) = a(2) - ib(2), F(6) = a(6) - ib(6) = a(2) + ib(2)$$

$$F(3) = a(3) = ib(3), F(5) = a(5) - ib(5) = a(3) + ib(3)$$

$$F(4) = a(4)$$

This pattern prevails for all sets of FFT coefficients, regardless of the value of N. Both F(0) and F(N/2) are real and, as noted previously, the coefficients F(n) for n > N/2 really contain no additional information. The FFT subroutine used here requires that the number of data points, N, provided be an integral power of 2, i.e.,

$$N = 2^{K}$$

where K is an integer. Thus analyses of 512, 1,024, or 2,048 data points (K = 9, 10, 11) would be suitable with this subroutine.

The following two requirements are satisfied in the FFT subroutine.

(a) By operating on the sampled function, obtaining the F(n) coefficients and carrying out the inverse FFT (FFT<sup>-1</sup>), the original time function is recovered. Schematically,

$$f(j) + FFT + F(n) + FFT^{-1} + f(j)$$

(b) The mean square of the sampled time function is equal to the sum of the squares of the moduli of the FFT coefficients, F(n), i.e.,

$$\frac{1}{N} \sum_{j=1}^{N} [f(j)]^2 = \sum_{n=0}^{N-1} |F(n)|^2$$

a. <u>Calling Statement</u>: SUBROUTINE FFT (FR, FI, K, ICO) (see Fig. 3). FR, FI = real and imaginary coefficients in

$$F(n) = FR(n) - iFI(n)$$

 $K = power of two (i.e., N = 2^K)$ 

 $ICO = control whether FFT or (FFT)^{-1}$ 

operation is desired if

$$ICO \begin{cases} = 0 \neq FFT \\ = 1 \neq (FFT)^{-1} \end{cases}$$

When entering the subroutine, FR is the time sequence f(j) and FI is arbitrary. When exiting the subroutine, FR and FI are the real and imaginary parts of the complex transform, respectively; e.g., input is

$$K = 5$$
  
ICO = 0  
$$f(j) = 1.0 + 2.0 \cos \frac{2\pi(j\Delta t)}{32} + 3.0 \cos \frac{4\pi(j\Delta t)}{32}$$
$$- 0.6 \sin \frac{2\pi(j\Delta t)}{32} - 1.4 \sin \frac{4\pi(j\Delta t)}{32}$$

| 1   | c  |                                   |
|-----|----|-----------------------------------|
|     | C  | FAST FOURIER THANSFORM SUBROUTINE |
|     |    | SUBRUUTINE FFT(FH+FI+K+ICO)       |
|     |    | UIMENSION FR(1)+FI(1)             |
| 5   |    | N22++K                            |
|     |    | IF(ICO.EG.O) GO TO IO             |
|     |    |                                   |
|     |    | FILIJ##FILIJ                      |
| 1.0 | 10 | MWB0                              |
| 10  |    | NNENet                            |
|     |    | DU 2 Matenn                       |
|     |    | LEN                               |
|     | 1  | L=L/2                             |
| 15  |    | IF(MR+L.GT.NN) GU TO 1            |
|     |    | MR=MUD(MR+L)+L                    |
|     |    | IF(MH.LE.M) GO TO 2               |
|     |    | TR=FK(M+1)                        |
|     |    | FR(M+1)#FR(MR+1)                  |
| 50  |    | FH(MR+1)=TR                       |
|     |    | TI#FI(M+1)                        |
|     |    | FI(M+1)=FI(MR+1)                  |
|     |    | Plime+1)stI                       |
|     | ć  | LONTINUE                          |
| 25  |    |                                   |
|     | 3  | IF(LeGE_N) GO IO /                |
|     |    | TOILLESSE                         |
|     |    | DO 4 Metal                        |
| 10  |    | ART. 1418004 STRAFI DAT(1-M)/FI   |
| 30  |    | WHECOBIAN                         |
|     |    | WISSIN(A)                         |
|     |    | DO 4 INMANAISTEP                  |
|     |    | J=I+L                             |
| 35  |    | IF(ICU.E0.1) GO TO 11             |
|     |    | TREWR*FR(J)=WI*FI(J)              |
|     |    | TI#WH*FI(J)+WI*FR(J)              |
|     |    | GO TU 12                          |
|     | 11 | TR#WR#FR(J)+WI#FI(J)              |
| 40  |    | TI#WR*FI(J)=WI*#R(J)              |
|     | 12 | FR(J)=FR(I)=TR                    |
|     |    | F1(J)#F1(I)=FI                    |
|     |    | E2(1)===(1)+1H                    |
| 45  | ۳  | FICI)=FICI)+II                    |
| 43  |    |                                   |
|     | 7  | CONTINUE                          |
|     |    | ANEN                              |
|     |    | IF(ICO.EQ.1) 00 TO 6              |
| 50  |    | 00 5 I=1.N                        |
| ••• |    | FR(1)=FR(1)/AN                    |
|     | 5  | F1(1)==F1(1)/AN                   |
|     | 6  | RETURN                            |
|     |    | ENU                               |
|     |    |                                   |

## Figure 3. Listing of FFT subroutine.

b. Data Input to Program.

| f(j) values at        | 6.000  | 5.080  | 3.750  | 2.184  |
|-----------------------|--------|--------|--------|--------|
| $\Delta t = 1$ second | 0.590  | -0.829 | -1.900 | -2.506 |
| intervals             | -2.600 | -2.215 | -1.451 | -0.465 |
| (32 values)           | 0.562  | 1.445  | 2.034  | 2.229  |
|                       | 2.000  | 1.391  | 0.513  | -0.475 |
|                       | -1.390 | -2.054 | -2.322 | -2.109 |
|                       | -1.400 | -0.257 | 1.188  | 2.755  |
|                       | 4.238  | 5.438  | 6.189  | 6.386  |
| FR =                  | 6.000  | 5.080  | 3.750  | 2.184  |
| (32 values)           | 0.590  | -0.829 | -1.900 | -2.506 |
|                       | -2.600 | -2.215 | -1.451 | -0.465 |

|    |                    | 0.562    | 1.445      | 2.034  | 2.229  |
|----|--------------------|----------|------------|--------|--------|
|    |                    | 2.000    | 1.391      | 0.513  | -0.475 |
|    |                    | -1.390   | -2.054     | -2.322 | -2.109 |
|    |                    | -1.400   | -0.257     | 1.188  | 2.755  |
|    |                    | 4.238    | 5.438      | 6.189  | 6.386  |
|    | FI =               | 0.000    | 0.000      | 0.000  | 0.000  |
|    | (32 values)        | 0.000    | 0.000      | 0.000  | 0.000  |
|    |                    | 0.000    | 0.000      | 0.000  | 0.000  |
|    |                    | 0.000    | 0.000      | 0.000  | 0.000  |
|    |                    | 0.000    | 0.000      | 0.000  | 0.000  |
|    |                    | 0.000    | 0.000      | 0.000  | 0.000  |
|    |                    | 0.000    | 0.000      | 0.000  | 0.000  |
|    |                    | 0.000    | 0.000      | 0.000  | 0.000  |
| c. | Calling Statement: | FFT (XR, | XI, 5, 0). |        |        |
|    | Output:            | 1.000    | 1.000      | 1.500  | 0.000  |
|    | a(n) coefficients  | 0.000    | 0.000      | 0.000  | -0.000 |
|    | (32 values)        | -0.000   | -0.000     | -0.000 | -0.000 |
|    |                    | -0.000   | -0.000     | -0.000 | -0.000 |
|    |                    | -0.000   | -0.000     | -0.000 | -0.000 |
|    |                    | -0.000   | -0.000     | -0.000 | -0.000 |
|    |                    | -0.000   | 0.000      | 0.000  | 0.000  |
|    |                    | 0.000    | 0.000      | 1.500  | 1.000  |
|    | b(n) coefficients  | 0.000    | -0.300     | -0.700 | -0.000 |
|    | (32 values)        | -0.000   | -0.000     | -0.000 | -0.000 |
|    |                    | -0.000   | -0.000     | -0.000 | -0.000 |
|    |                    | -0.000   | -0.000     | -0.000 | 0.000  |
|    |                    | 0.000    | 0.000      | 0.000  | 0.000  |
|    |                    | 0.000    | 0.000      | 0.000  | 0.000  |
|    |                    | 0.000    | 0.000      | 0.000  | 0.000  |
|    |                    | 0.000    | 0.000      | 0.700  | 0.300  |
|    |                    |          |            |        |        |

 $\Delta t$  (time step) = 1 second in above example.

#### 2. HFC Subroutine.

This subroutine resets the spatial aliasing frequency cutoff to a higher frequency than would be the case for normal incidence of waves to gage pair. In the present version of this subroutine, it has been assumed that the maximum angle which the wave crests can make with the gage pair axis is 45°. The spatial aliasing criteria are expressed in Figure 1, where for proper resolution of wave direction the following criteria must be met

$$l\cos \left[\Theta(n) - \beta\right] < \frac{L}{2}$$
$$k(n) l\cos \left[\Theta(n) - \beta\right] < k(n) \frac{L}{2}$$

The proper spatial aliasing frequency to correspond with the spacial aliasing wave number cutoff is found from the normal wave dispersion relationship.

Calling Statement: HFC (DEPTH, S, DELTT, N, NSALFR) (see Fig. 4). DEPTH = depth of water at gage site (from main program) S = spacing of wave gage pair (from main program) (= & in text) = time-step increment between values in time series analyzed DELTT (from main program) N = exponent of 2 describing number of time series values (from main program) NSALFR = integer number for spatial aliasing frequency cutoff 1 ç SUBRUUTINE HECCHIGH FREQUENCY CUTOFF/SPACIAL ALIASING FREQUENCY) HESETS ALIASING CUTUFF TO HIGHER FREQUENCY HASED UN ASSUMED MAXINUH WAVE ANGLE SUBRUUTINE HFC(DEPTH+8+DELTT+N+N8ALFR) C C 5 SPACIAL ALIASING ASSUMES WAVE ANGLES LESS THAN 45 DEGREES с XK8=3,14159/0,707 XKH=XK6+DEPTH/S SIGSU=32.2+(XKH/OEPTH)+TANH(XKH) SIGHF=BORT(SIGSO) HECLN=FLOAT(N)+DELTT 10 NSALFH#SIGHF\*RECLN/6.283 RETURN END

Figure 4. Listing of HFC subroutine.

#### 3. SWITCH Subroutine.

1

This subroutine is set up to interchange time-series data arrays in the instance when gage 2 data are processed before gage 1 data (see Fig. 5). If the first gage record processed is not equal to the appropriate number of the gage, as specified in main program, data arrays of first and second gage records are interchanged.

C C SUBRUUTINE SWITCH EXCHANGES LUCATIONS OF TIME SERIES DATA TO ASSURE GAGE1 18 STORED IN FIRST ANRAY AND GAGE2 IN SECOND SUBRUUTINE SWITCH(M1.M2.FIR.F2R) C DIMENSION FIR(1024) . F2R(1024) . F3R(1024) 5 MBEMI MISHR H2=H3 DO 10 1=1+1024 10 F3R(I)=F1R(I) FIR(I)#F2H(I) F2H(I)=F3R(I) 10 CUNTINUE RETURN 15 ENĎ

Figure 5. Listing of SWITCH subroutine.

#### 4. WVLEN Subroutine.

This subroutine accepts wave period and water depth as input and calculates wave number as output via a Newton-Raphson iteration.

Calling Statement: WVLEN (DPT, PER, XKH) (see Fig. 6). DPT = water depth (from main program) PER = wave period (from main program) XKH = wave number \* water depth (calculated in subroutine) 1 C C WAVE LENGTH ITERATION SUBROUTINE ... THIS SUBROUTINE CALCULATES WAVELENGTH VIA NEWTON-RAPHBON ITERATION USING PERIOD, WATER DEPTH INPUT CCCC PERSWAVE PERIOD OPTSWATER DEPTH 5 XKHEWAVE NUMBERSWATER DEPTH SUBROUTINE WYLEN(DPT, PER, XKH) 1KH0= (6.2831853/PER) ++2+0PT/32.2 IF (XKH0=6.3)2.1.1 10 1 XKHEXKHD GO TO 9 2 XKH#SURT(XKHU) 3 SHESINH(XKH) CH#CUSH(XKH) 15 EPaskHU-XKH+8H/CH SLUPE==XKH/CH##2=8H/CH DXKHE-LPB/SLOPE IF (AB8(DXKH/XKH)=0.0001)9+9.4 4 XKH#XKH+DXKH .... GU TU 3 9 CUNTINUE RETURN **FNÓ** 

Figure 6. Listing of WVLEN subroutine.

5. BUF Subroutine.

This subroutine is set up to read in wave gage files from magnetic tape. The data records consist of arrays of 4,100 values, the first four of which are the gage number, month, day, and time of wave record. The remaining 4,096 values represent pressures in thousandths of a foot (head) water. The data are returned to main program as a wave gage number-date series and a time series of 4,096 values of pressure in feet (head) of water. Two records are processed in one pass.

Calling Statement: BUF (MGAGE, MONTH, MDAY, MTIME, CNTL, IDATE, END) (see Fig. 7).

MGAGE = number of gage (read from tape)

MONTH = month of observation (read from tape)

MDAY = day

MTIME = time

CNTL = control array of 4,096 pressure values in feet (head) of water returned to main program

IDATE = summed time group for time comparison between gages

END = logical end

|     | r   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | č   | SUBPOSITING MUR DEADS IN WAVE GACE DATE INFO AND TIME SERIES DANAMIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     | ž   | Descripte but we the first what the bate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     | Ļ   | THESSURE VALUES IN FEEL HEAV OF WALER VALUES AND AVEDACES TO DETAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     |     | THIS SURPLUTINE REAUS 4040 THE SERIES VALUES AND AVERAGES TO DETAIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     |     | 1024 VALUES FUR MAIN PROGRAM ANALYSIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     | C   | MGAGEAGAGF NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | ç   | MONTHEMUNTH OF RECORDING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     | ÷ Ç | MDAY=DAY DF RECONDING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     | C   | MTIMENTIME OF RECORDING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 10  | C   | REALMARRAY OF AVERAGED TIME SERIES VALUES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     |     | SUBRUUTINE BUF(MGAGE:MONTH:MDAY:MTIME:REAL:IDATE:END)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     |     | DIMENBIUN CNTL(4096)+IA(5000)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     |     | DIMENSION REAL(1024)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     |     | LUGICAL END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 15  |     | 00 12 J=1.409h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |     | CNTL(J)=0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     | 16  | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     | •   | SUFFER IN(9+1)(IA(1)+IA(5000))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |     | 1F(UNIT(9))10-20-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 20  | 20  | ) PRINT 11.(14(1).181.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ••• | 11  | FURMAT( ( PARITY ERRUN ON (+417)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | 10  | CUNTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     | ••  | MGGGETA(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     |     | MUNTHETA(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 25  |     | MDAVETACE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| .,  |     | MTIMETACA1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3.0 |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 30  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     | 26  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     | ٤.  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     | 29  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 22  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     |     | The set of |
|     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| - 0 | 27  | OCTINGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 40  |     | REIURN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     | 30  | ENDE TRUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     |     | RETURN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     |     | END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

Figure 7. Listing of BUF subroutine.

V. SAMPLE OUTPUT

Three examples of output are presented for different dates for the wave gage pair at Channel Islands Harbor (Fig. 8). The year the data was taken was 1975.

The first set of frequencies lists amplitude modules squared of wave data having impossible direction results. The sum total of this energy (in decimal percent) is listed as the quantity RSODD in the variable output at the bottom of the output. In the case of the wave data taken on 7-26-1600, the incoherent data amounted to 0.004 (0.4 percent) of the total energy in the wave record.

The second set of frequencies listed provides the wave direction for the frequency bands having a significant part of the energy ( $\geq 2.5$  percent). In the case of the wave record taken on 7-26-1600, it is seen that the wave angle is reasonably consistent from the frequency-to-frequency band and is approximately 0.70 radian (40.1°).

The variable list provided at the bottom of the sampled output gives values of most importance in the analysis of wave information for longshore energy flux. The longshore energy flux output is in pounds per second units; the output in the first example is 89.23 pounds per second.

## Example 1

| 311       7       26       1600         312       7       26       1600         1       316408       000025         4       024544       000014         5       030680       000027         7       042951       000028         9       055223       000014         10       061359       000028         14       065903       0000012         24       147262       000012         25       153390       000004         27       165670       000040         28       17942       000029         29       17942       000029         30       184076       000040         32       196350       000029         42       257709       000041         65       398855       000029         42       25717       04032868       7789305         74       4505511       10395194       6978613         75       44019424       06896760       6919809         75       44019424       06896760       6919809         75       44019424       06896760       6919809         76<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GAUGE NO | . ML     | UNTH      | DAY     | TIME      |          |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|-----------|---------|-----------|----------|-------|
| 312     7     26     1600       1     316#4(1)     FMDSQ(1)       3     018408     000025       4     024544     000027       7     004251     000027       10     055223     000012       11     067495     000027       24     147262     000127       25     153398     000002       24     147262     000127       25     153398     000004       27     165570     00002       28     17942     000040       32     196350     000040       33     202465     000024       42     257709     000041       45     27617     000041       45     27617     000041       45     276935     000040       42     257709     000041       45     27617     00032966       73     4492359     02831251       66     41724277     04032966       75     40019424     06590780       76     4766201     0250015       77     48473793     04437262       79     48473793     04437262       80M1=     229     30M2=       80M2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 311      |          | 7         | 20      | 1600      |          |       |
| 1         \$16MA(1)         FMDBQ(1)           3         .018408         .000025           4         .024544         .000014           5         .030680         .000027           7         .042451         .000021           10         .051559         .000021           11         .067495         .000021           14         .065903         .000027           25         .153398         .000021           27         .165570         .000020           28         .177942         .000041           27         .165570         .000041           27         .165570         .000041           32         .196350         .000041           32         .202485         .000041           45         .27709         .000141           45         .27709         .000141           45         .27709         .000141           45         .27709         .000141           45         .27709         .020121           46         .41724277         .040329861         .7799505           73         .4492359         .0281251         .66337628           75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 312      |          | 7,        | 59      | 1600      |          |       |
| 3         018408         000025           4         024544         000014           5         030640         000027           7         042951         000021           10         061359         000021           11         067495         000021           14         005903         000021           14         005903         000021           24         147262         00012           25         153399         000029           24         147762         000040           30         184076         000040           32         196550         000029           42         257709         000040           32         196355         000029           42         257709         000040           33         202485         000029           42         257709         000040           45         378635         000029           42         257709         000041           68         41724277         04032986         7799055           73         4479239         02831251         68437628           74         45065201         0250015 <td>I</td> <td></td> <td>SIGMA(I)</td> <td></td> <td>FMDSQ(I)</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I        |          | SIGMA(I)  |         | FMDSQ(I)  |          |       |
| 4       .02454       .000014         5       .030600       .000027         7       .042951       .000012         10       .061359       .000021         11       .067495       .000040         14       .065903       .000040         14       .065903       .000040         24       .147262       .000041         27       .165670       .000040         30       .184076       .000040         32       .196350       .000040         32       .196350       .000040         32       .196350       .000040         32       .196350       .000040         33       .202465       .000041         65       .399835       .000041         65       .399835       .000041         65       .4479239       .0231251       .68437628         74       .45405831       .10359144       .6690760       .69198090         75       .46019424       .06690760       .69198090       .69198090       .71912354         79       .48473793       .04457282       .63791396       .71912354         79       .48473793       .04457282                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | j        |          | .018408   |         | .000025   |          |       |
| \$         .030680         .000037           7         .042951         .000036           9         .055223         .000012           10         .061359         .000021           11         .067495         .000005           24         .147262         .000127           25         .153398         .000041           27         .165670         .000041           28         .177942         .000040           30         .184076         .000041           32         .196350         .000040           32         .196350         .000041           42         .257709         .000041           65         .396835         .000029           42         .257709         .000041           65         .396835         .000029           73         .4479239         .02831251         .88437028           74         .45405631         .03994604         .7799305           73         .44792239         .02831251         .68437028           75         .46019424         .06890760         .69198090           78         .47860201         .02500015         .71912554           79 </td <td>4</td> <td></td> <td>.024544</td> <td></td> <td>.000014</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4        |          | .024544   |         | .000014   |          |       |
| 7       .002951       .000036         9       .055223       .000012         10       .061359       .000021         11       .067495       .000046         14       .085903       .00002         24       .447262       .000127         25       .153390       .000041         27       .165670       .000040         30       .184076       .000040         32       .96350       .000040         32       .202485       .000029         42       .257709       .000041         65       .396835       .000041         65       .396835       .000041         65       .396835       .000041         65       .396835       .000041         65       .4479239       .02831251       .68437628         74       .45405831       .1039144       .69736413         75       .46019424       .06809760       .69198090         78       .46019424       .06590760       .69198090         78       .4604937423       .024357282       .63791396         79       .48473793       .04457282       .63791396         8UM1=       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5        |          | .030680   |         | .000027   |          |       |
| 9       .055223       .000012         10       .061359       .000021         11       .067495       .000048         14       .065903       .000048         14       .065903       .000048         14       .065903       .000048         14       .065903       .000048         24       .117742       .000041         27       .165670       .000002         29       .177942       .000002         30       .184076       .000029         42       .257709       .000014         45       .276117       .000014         65       .398835       .0000093         1       .91GMA(1)       PCT       THETA(1)         67       .41110685       .03904604       .70276903         68       .4172277       .04032986       .77993055         73       .4479239       .02031251       .68437628         74       .45405831       .10353194       .69198090         75       .46019424       .06690760       .69198090         78       .47660201       .0250015       .71912354         9041       .2932       .202       .63791396                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7        |          | .042951   |         | .000036   |          |       |
| 10 001359 000001<br>11 007495 00000<br>24 147262 000187<br>25 153399 00000<br>27 105670 00000<br>29 177942 000099<br>30 104076 000006<br>33 202445 000029<br>42 257709 000014<br>45 276117 000004<br>65 3398855 0000093<br>1 81GMA(1) PCT THETA(1)<br>67 1110685 03904604 70276903<br>68 1172277 04032988 77993085<br>73 44702239 0231251 88437628<br>74 45405851 1039514 66738613<br>75 46019424 06690760 69198090<br>78 47860201 02510015 7191254<br>79 48473793 04457262 653791396<br>NSALFR# 201<br>DEPTH OF WATER AT GAUGE SITE# 23.2<br>AVG1# 21.411 AVG2# 19.909<br>80H1# 0084 WSUM2# 0086<br>79 48473793 04457262 653791396<br>NSALFR# 201<br>DEPTH OF WATER AT GAUGE SITE# 23.2<br>AVG1# 21.411 AVG2# 19.909<br>80H1# 0084 WSUM2# 0086<br>REATING WAYE HELGHT H## 3.03<br>BREAKING WAYE HE | 9        |          | .055223   |         | .000012   |          |       |
| 11       .007495       .000048         14       .005903       .00005         24       .147262       .000127         25       .153390       .000002         27       .165670       .000002         29       .17942       .000040         32       .196350       .000040         32       .196350       .000040         32       .202485       .000040         42       .257709       .000041         65       .398835       .000040         65       .398835       .000041         65       .398835       .000041         65       .398835       .000041         65       .41724277       .04032986       .7799305         73       .4479239       .0281251       .8843728         74       .45405811       .10393144       .69736613         75       .46019424       .06890760       .69798613         75       .464019424       .06890760       .69798613         75       .464019424       .06890760       .69798613         76       .47660201       .02500015       .71912354         79       .48473793       .04457282       .6379                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10       |          | .061359   |         | .000021   |          |       |
| 14       .003403       .000003         24       .147762       .000127         25       .153398       .000002         27       .165670       .000002         30       .184076       .000002         32       .196350       .000028         42       .257709       .000014         45       .276117       .000014         65       .3798835       .0000093         1       \$IGMA(1)       PCT       THETA(1)         67       .61110685       .03004604       .70276903         68       .4172277       .04032986       .77995055         73       .4479239       .02631251       .68437628         74       .45905811       .10393194       .66738613         75       .46019424       .06690760       .667198030         78       .47860201       .0250015       .71912554         79       .48473793       .04457282       .63791396         8UM1=       .084       %0M2=       .234         %SUM1=       .084       %0M2=       .036         %SUM1=       .084       %0M2=       .036         %SUM1=       .084       %0M2=       .036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11       |          | .067495   |         | .000048   |          |       |
| 24     .197282     .000127       25     .153399     .000041       27     .165670     .000041       29     .177942     .000099       30     .184076     .000040       32     .196350     .000040       32     .257709     .000014       45     .276117     .000041       65     .398835     .000093       1     .0170279     .00014       65     .398835     .000093       1     .0170276903       66     .41724277     .04032986       73     .4479239     .02031251       .66     .41724277     .04032986       73     .4479239     .02031251       .66     .01709305       73     .4479239       .75     .46019424       .0689760     .69198090       .78     .47860201     .0250015       .79     .48473793     .04457282       .0190     .0250015     .71912354       .99     .024     .0689760       .63791396     .03405782       .63791396     .111       .029     .029       .04457282     .63791396       .04457282     .63791396       .04457282     .63791396                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14       |          | .005903   |         | .000005   |          |       |
| 27       165570       000002         29       17942       000099         30       184076       000020         32       196350       000020         42       257709       000040         42       257709       000041         65       396835       000020         42       257709       000041         65       396835       000041         65       396835       000041         65       4110665       03904604       .70276903         66       41724277       04032966       .7799505         73       44479239       02831251       .88437028         74       45405631       10393194       .69736613         75       .46019424       06890760       .69736613         75       .46019424       06890760       .69736613         78       .47860201       .02500015       .71912554         79       .48473793       .04457282       .63791396         N8ALFR#       201       0250015       .71912554         79       .48473793       .04457282       .63791396         N8ALFR#       201       0250015       .71912554                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24       |          | .151108   |         | .000127   |          |       |
| 24       177942       000002         30       184076       000040         32       196350       000066         33       202485       000029         42       257709       000040         45       276117       000041         65       4110655       03904604       .70276903         1       #IGMA(1)       PCT       THETA(1)         67       41110655       .03904604       .70276903         68       41724277       .04032988       .77995055         73       .44792339       .02631251       .68437628         74       .4505811       .1039144       .66738613         75       .46019424       .06590760       .667198070         78       .46019424       .06590760       .667198070         78       .4647860201       .0250015       .71912554         79       .48473793       .04457282       .63791396         N8ALFR#       201       .0250015       .71912554         79       .48473793       .04457282       .63791396         N8ALFR#       201       .02457282       .63791396         N8ALFR#       201       .0240       .04457282       .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 27       |          | 165670    |         | 000041    |          |       |
| 30       .184078       .000040         32       .196350       .000066         33       .202485       .000029         42       .257709       .000041         45       .276117       .000041         65       .398835       .000093         1       \$IGMA(1)       PCT       THETA(1)         67       .4110685       .03904604       .70276903         68       .41724277       .04032986       .77993085         73       .4479239       .02031251       .88437628         74       .45405311       .1039194       .69738813         75       .46019424       .06890760       .69198090         78       .47860201       .0250015       .71912354         79       .48473793       .04457282       .63791396         NSALFR#       201       .0250015       .71912354         79       .48473793       .04457282       .63791396         NSALFR#       201       .0250015       .71912354         79       .8493938       .038       .63791396         NSALFR#       .029       .0497282       .63791396         NSALFR#       .029       .04457282       .63791396                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29       |          | 177942    |         | .000002   |          |       |
| 32       .196350       .000066         33       .202485       .000029         42       .257709       .000041         45       .276117       .000041         65       .398835       .000093         1       \$IGMA(1)       PCT       THETA(1)         67       .4110685       .03904604       .70276903         68       .41724277       .04032988       .77993085         73       .4470239       .02031251       .86437628         74       .45405831       .10395194       .66738613         75       .46019424       .06890760       .69198090         78       .47860201       .02500015       .71912354         79       .48473793       .04457282       .63791396         NSALFR#       201       .02500015       .71912354         79       .48473793       .04457282       .63791396         NSALFR#       201       .0250015       .71912354         NSALFR#       201       .0250015       .71912354         8UM1=       .064       .80M2#       .234         NSALFR#       .229       .04457282       .63791396         SUMEN#       .18433938       .03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30       |          | .184078   |         | .000040   |          |       |
| 33       .202485       .000020         42       .257709       .000014         45       .276117       .000041         65       .390835       .0000043         1       \$IGMA(I)       PCT       THETA(I)         67       .4110685       .03904604       .70276903         68       .41724277       .04032986       .77795085         73       .44479239       .02031251       .88437628         74       .45405831       .1039144       .66909760       .669198090         75       .46019424       .06809760       .669198090       .71912354         78       .46473793       .04457282       .63791396         79       .48473793       .04457282       .63791396         8UM1=       .064       M6UM2=       .04457282       .63791396         8UM1=       .064       M6UM2=       .084       .04457282       .63791396         8UM1=       .064       M6UM2=       .045998       .0729       .04457282       .63791396         8UM1=       .064       M6UM2=       .045998       .0170       .0170       .0170         90000       .0040       R8HFH0=       .213       R8LFRW#       .0170 <td>32</td> <td></td> <td>.196350</td> <td></td> <td>.000066</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 32       |          | .196350   |         | .000066   |          |       |
| 42       .357709       .000014         45       .276117       .000041         65       .398835       .000093         1       \$IGMA(1)       PCT       THETA(1)         67       .4110685       .03904604       .70276903         68       .4172277       .04032986       .77993055         73       .4479239       .02031251       .68437628         74       .45405831       .10393194       .66198070         75       .46019424       .06890760       .66198070         75       .46019424       .06890760       .66198070         75       .46019424       .02500015       .71912354         79       .48473793       .04457282       .63791396         N8ALFR#       201       .04457282       .63791396         N8ALFR#       .0040       .847102       .2729         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 33       |          | .202485   |         | .000029   |          |       |
| 45 .276117 .000041<br>65 .398835 .000093<br>I \$IGMA(1) PCT THETA(1)<br>67 .41110685 .03904604 .70276903<br>68 .41724277 .04032888 .77993085<br>73 .4479239 .02831251 .88437828<br>74 .458405831 .10395194 .69738613<br>75 .46019424 .06890760 .69198090<br>78 .47860201 .0250015 .71912354<br>79 .48473793 .04457282 .63791396<br>N8ALFR# 201<br>DEPTH OF WATER AT GAUGE BITE# 23.2<br>AVG1# 21.411 AVG# 19.999<br>8UM1# .229 SUM2# .234<br>#SUM1# .084 #SUM2# .086<br>RATIOL# .18433938<br>GREAKING WAVE ELGRITY C6# 11.18<br>R80DD# .0040 R8HFR# .2113 R8LFRW# .0170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 42       |          | .257709   |         | .000014   |          |       |
| 65       .398835       .000093         I       \$IGMA(I)       PCT       TMETA(I)         67       .41110685       .03904604       .70276903         68       .41724277       .04032986       .77095085         73       .44792239       .02031251       .88437628         74       .45405631       .10395194       .66736613         75       .46019424       .06890760       .69196090         78       .47860201       .02500015       .71912554         79       .48473793       .04457282       .63791396         NSALFR#       201       .02500015       .71912554         AvG1#       21.411       AvG2#       .04457282       .63791396         NSALFR#       201       .02500015       .71912554       .04457282       .63791396         NSALFR#       201       .04457282       .63791396       .04457282       .63791396         NSALFR#       229       SUM2#       .234       .04437282       .63791396         NSUM1#       .064       MSUM2#       .234       .04437282       .039         SUMEN*       .18433936       .039       .039       .039         SUMEN*       .18433936       .039 </td <td>45</td> <td></td> <td>.276117</td> <td></td> <td>.000041</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 45       |          | .276117   |         | .000041   |          |       |
| I \$IGMA(1) PCT THETA(1)<br>67 *41110685 .03904604 .70276903<br>68 *41724277 .04032988 .77993085<br>73 *4479239 .02031251 .88437928<br>74 *45405631 .10395194 .69738413<br>75 *46019424 .06890760 .69198090<br>78 *47860201 .02500015 .71912354<br>79 *48473793 .04457282 .63791396<br>NSALFR# 201<br>DEPTH OF WATER AT GAUGE BITE# 23.2<br>AVG1# 21.411 AVG2# 23.2<br>AVG1# 21.411 AVG2# .234<br>AVG1# 21.411 AVG2# .234<br>BUM1# .084 WBUM2# .086<br>WSUM1# .084 WBUM2# .086<br>WSUM1# .804 WBUM2# .086<br>BREAKING WAVE ELEARITY C6# 11.18<br>RS0D0# .0040 RSMFR0# .2113 RSLFRU# .0170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 65       |          | . 398835  |         | .000093   |          |       |
| 67       41110685       0304604       .70276003         68       41724277       04032886       .77995085         73       .4479239       .02031251       .88437628         74       .45405831       .10375194       .66738613         75       .46019424       .06689760       .66198070         78       .47660201       .02500015       .71912354         79       .48473793       .04457282       .63791396         NSALFR#       201       .02500015       .71912354         79       .48473793       .04457282       .63791396         NSALFR#       201       .02500015       .71912354         VG1#       2141       AVE2#       19.999         8UM1#       .064       NSUM2#       .234         #SUM1#       .064       NSUM2#       .234         #SUM1#       .064       NSUM2#       .234         #SUM1#       .064       NSUM2#       .036         #ATIO1# 2*750       RATIU2#       2*729         SUMEN#       .18433938       .03         BREAKING WAVE HEIGHT H##       3.03         BREAKING WAVE ELESRITY C6#       11.18         R80DD#       .0040       RSHFRG# </td <td>Ţ</td> <td></td> <td>RIGMA(I)</td> <td></td> <td>Ret</td> <td>1454</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ţ        |          | RIGMA(I)  |         | Ret       | 1454     |       |
| 68       41724277       004032986       77995085         73       44792239       002031251       .88437628         74       +45405631       10393194       .66736613         75       +46019424       .06890760       .69198090         78       +47860201       .02500015       .71912354         79       +48473793       .04457282       .63791396         NSALFR#         201         DEPTH DF WATER AT GAUGE BITE#       23.2         AvG1#       21.411       AvG2#       .086         AVG2#       .234         WSUM1#       .064       WSUM2#       .234         WSUM1#       .064       WSUM2#       .234         WSUM1#       .064       WSUM2#       .086         RATIO1#       2.729       .040       RATIO2#       2.729         SUMEN*       .18433938       .03       .03       .0340       .0170         BREAKING WAVE HEIGHTY H##       3.03       .030       .0040       .0170         PLNOIM       .040421       PLNEG#       .2413       RSLFRU#       .0170         PLNET#       60.2271       PLNE#       .54150       .0170 <td>67</td> <td></td> <td>.41110685</td> <td></td> <td>.01904604</td> <td>7087</td> <td>001</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 67       |          | .41110685 |         | .01904604 | 7087     | 001   |
| 73       .44792339       .02031251       .08437028         74       .45405831       .10393194       .66738613         75       .46019424       .06899760       .66798090         78       .47860201       .02500015       .71912354         79       .48473793       .04457282       .63791396         N8ALFR#       201       .02500015       .71912354         02437282       .63791396       .63791396         N8ALFR#       201       .04457282       .63791396         N8ALFR#       2.03       .04457282       .63791396         N8ALFR#       2.01       .04457282       .63791396         SUM1=       .064       .0402#       .040         N8ALFR#       .01402#       .729       .040         SUMEN*       .18433938       .03       .03         BREAKING WAVE CELERITY CB#       11.18 <td>68</td> <td></td> <td>.41724277</td> <td></td> <td>.04032988</td> <td>.7790</td> <td>1085</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 68       |          | .41724277 |         | .04032988 | .7790    | 1085  |
| 74       .45405831       .10393194       .66738413         75       .46019424       .06690760       .69198070         78       .47860201       .02500015       .71912354         79       .48473793       .04457282       .63791396         N8ALFR#       201       .02500015       .71912354         79       .48473793       .04457282       .63791396         N8ALFR#       201       .23.2       .4571028       .23.2         AVG18       21.411       AV628       19.999       .234         9UM18       .229       .23.2       .234         #SUM18       .064       .01028       .2729         9UMEN8       .18433938       .03       .068         0REAKING WAVE HEIGHT H08       3.03       .03       .0400         0REAKING WAVE CELERITY C68       11.18       .0170         PLPO88       .0040       .2413       .0170         PLNEI8       60.2211       .01868       .2413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 73       |          | .44792239 |         | .02831251 | .8841    | 1628  |
| 75 +46019424 +06890760 +69198090<br>78 +47860201 +02500015 +71912354<br>79 +48473793 +04457282 +63791396<br>NSALFR# 201<br>DEPTH OF WATER AT GAUGE BITE# 23.2<br>AVG1# 21+411 AVG2# 19.999<br>SUM1= +084 HSUM2# +086<br>RATIOL# 2.729 SUM2# +234<br>WSUM1= +084 HSUM2# +086<br>RATIOL# 2.729<br>SUMEN# +18433938<br>GREAKING WAVE CELERITY C6# 11+18<br>RSODD# +0040 RSHFRG# +2413 RSLFRU# +0170<br>PLNEI# 60,2271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 74       |          | .45405831 |         | .10395194 | +6973    | 5613  |
| 78       +47860201       .02500015       .71912354         79       .48473793       .04457282       .63791396         NSALFR#       201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 75       |          | .46019424 |         | .06899760 | +69191   | 8090  |
| 79       .48473793       .04457282       .63791396         N8ALFR#       201         DEPTH OF WATER AT GAUGE BITE#       23.2         AVG1#       21.411       AVG2#       19.999         8UM1#       .229       SUM2#       .234         WSUM1#       .084       WSUM2#       .086         RATIO1#       2.729       SUM2#       .036         8FEAKING WAVE HEIGHT H0#       3.03       8FEAKING WAVE CELERITY C6#       11.18         RS0DD#       .0040       RSHFRG#       .2413       RSLFRU#       .0170         PLN0I#       60.2271       PLNEG#       =5.4150       .0170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 78       |          | .47860201 |         | .02500015 | +71912   | 2354  |
| NBALFR#     201       DEPTH OF WATER AT GAUGE BITE#     23.2       AVG1#     21.411     AVG2#     19.999       BUM1#     .229     BUM2#     .234       WSUM1#     .084     WBUM2#     .086       RATIO1#     2.730     RATIQ2#     2.729       BUMEN#     .18433938     8REAKING WAVE HEIGHT H0#     3.03       BREAKING WAVE CELERITY CB#     11.18     RS0D0#     .0040       RB0D0#     .0040     RBMFHG#     .2413     RSLFRW#     .0170       PLNE1#     60.2271     PLNEG#     =5.4150     .0170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 79       |          | .48473793 |         | .04437282 | +6379    | 396   |
| DEPTH OF WATER AT GAUGE BITEM 23.2<br>AVG1# 21.411 AVG2# 19.999<br>SUM1# .229 SUM2# .234<br>W\$UM1# .084 W6UM2# .086<br>RATI01# 2.730 RATI02# 2.729<br>SUMEN# .18433938<br>GREAKING WAVE HEIGHT HO# 3.03<br>GREAKING WAVE CELERITY C6# 11.18<br>R\$000# .0040 R\$MFRG# .2413 R\$LFRU# .0170<br>PLP08# 44.6421 PLNEG# =5.4150<br>PLNET# 60.2271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NBALFRE  |          |           |         | 201       |          |       |
| AVG1# 21.411 AVG2# 19.999<br>SUM1# .229 SUM2# .230<br>MSUM1# .084 HSUM2# .086<br>RATIO1# 2.730 RATIO2# 2.729<br>SUMEN# .18433938<br>GREAKING WAVE HEIGHT HO# 3.03<br>GREAKING WAVE CELERITY CB# 11.18<br>RSODD# .0040 RSHFHG# .2413 RSLFRW# .0170<br>PLP08# 94.6421 PLNEG# =5.4150<br>PLNE1# 60.2271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DEPTH OF | WATER AT | GAUGE 81  | TER     | 23.2      |          |       |
| 8UM10 .229 SUM20 .234<br>WSUM10 .084 WSUM20 .086<br>RATIO10 2.730 RATIO20 2.729<br>SUMENE .18433938<br>BREAKING WAVE HEIGHT HOM 3.03<br>BREAKING WAVE CELERITY COM 11.18<br>RSODDm .0040 R3HFRGm .2413 RSLFRUM .0170<br>PLPOSE 44.6421 PLNEGM =5.4150<br>PLNEIM 60.2271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AVG1#    | 21.411   | Å         | VG2=    | 19,999    |          |       |
| WSUM1= .084 HSUM2= .086<br>RATIO1= 2.729<br>SUMEN= .8433938<br>BREAKING WAVE HEIGHT HB= 3.03<br>OREAKING WAVE CELERITY CB= 11.18<br>RSODD= .0040 RSHFNQ= .2413 RSLFRUP .0170<br>PLPOB= 44.6421 PLNEG= =5.4150<br>PLNET= 60.2271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SUMIE    | .229     | 3         | UM2=    | .234      |          |       |
| HATIUIS 2.730 RATIU28 2.729<br>SUMENS .18433938<br>SREAKING WAVE HEIGHT HOS 3.03<br>BREAKING WAVE CELERITY COS 11.18<br>RSODDS .0040 RSHFNGS .2413 RSLFRUM .0170<br>PLP085 94.6421 PLNEGS =5.4150<br>PLNEIS 60.2271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WSUM1=   | .084     | W         | SUM2=   | .086      |          |       |
| 307ENS .18433938<br>GREAKING WAVE HEIGHT HOM 3.03<br>GREAKING WAVE CELERITY COM 11.18<br>RSODDA .0040 RSHFHGM .2413 RSLFRUM .0170<br>PLP085 44.6421 PLNEGS =5.4150<br>PLNETS 60.2271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HATIO18  | 2.730    | R         | #SOIT4  | 2.729     |          |       |
| OREANING MAVE RELEMITING<br>OREANING MAVE CELEMITY COM 11.18<br>RSODDm 0040 RSHFRG: 2413 RSLFRG: 0170<br>PLPOB: 44.6421 PLNEG: 5.4150<br>PLNET: 60.2271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SUMENE   | .1843    | 3439      |         |           |          |       |
| RSODD         .0040         RSHFRG         .2413         RSLFRG         .0170           PLP08         94.6421         PLNEG         =5.4150         PLNET         60.2271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | APEAKING | HAVE HEL | ERTTY CO- |         | 3.03      |          |       |
| PLP08= 94.6421 PLNEG= =5.4150 PLNEI .0170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | READOR   | HAVE CEL | ERIT CO   |         | 11.18     | Del Sour |       |
| PLNETa 80.2271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PLPOSE   | Su. 6021 |           | INFRE   | -2413     | ASLFRUE  | .0170 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PLNETE   | 80.2271  |           | 2.02.04 | -204120   |          |       |

Figure 8. Three examples of output for wave gage pair at Channel Islands Harbor.

| Tranore + | Exa | amp | 16 | 2 2 |
|-----------|-----|-----|----|-----|
|-----------|-----|-----|----|-----|

| GAUGE NO | . MUNTH          | DAY     | TIME          |                   |
|----------|------------------|---------|---------------|-------------------|
| 311      | 7                | 26      | 1800          |                   |
| 312      | 7                | 26      | 1800          |                   |
|          |                  |         |               |                   |
|          |                  |         |               |                   |
| 1        | SIGHALL          | ,       | PH080(1)      |                   |
| 1        | .000130          |         | .000169       |                   |
| 2        | •012272          |         | .000099       |                   |
| 3        | .018408          |         | .000007       |                   |
| 2        | .030680          |         | .000013       |                   |
|          | .0490.87         |         | .000066       |                   |
|          | .055223          |         | .000164       |                   |
| 10       | .061359          |         | .000038       |                   |
| 11       | .067495          |         | .000000       |                   |
| 13       | .079767          |         | .000168       |                   |
| 14       | .085903          |         | • 0 0 0 2 0 1 |                   |
| 15       | .092039          |         | .000137       |                   |
| 16       | .098175          |         | .000114       |                   |
| 18       | •110447          |         | • 000055      |                   |
| 19       | .116583          |         | .000061       |                   |
| 23       | .141126          |         | .000004       |                   |
| 59       | .159534          |         | .000072       |                   |
| 28       | .171806          |         | .000008       |                   |
| 30       | .184078          |         | •000050       |                   |
| 31       | .190214          |         | .000006       |                   |
| 42       | .257709          |         | .000028       |                   |
| 58       | •355884          |         | .000064       |                   |
|          |                  |         |               |                   |
| ,        | BICHACI          | ,       | Det           | THETALIS          |
|          | 0100411          |         | 09545330      | 10C1A(4)          |
| 15       |                  | 1       | 0/0/JEEY      | */2203013         |
| 73       | .4001448         |         | .04043310     | + 0 5 0 0 5 E E / |
| 70       |                  | 8       | 0/13141/33    | .73484734         |
| · · ·    | .4/24600         | 0       | .00231300     | */3444/60         |
|          |                  |         |               |                   |
| NSALFRE  |                  |         | 203           |                   |
| DEPTH OF | WATER AT GAUGE S | ITE=    | 24.0          |                   |
| AVG1     | 22.246           | AV024   | 20.808        |                   |
| SUM1 #   | .299             | 8UM24   | .293          |                   |
| WSUM1=   | .084             | WSUM2=  | .078          |                   |
| RATIOIS  | 3.579            | RATIU2= | 3.741         |                   |
| SUMENE   | .31014470        |         |               |                   |
| BHEAKING | HAVE HEIGHT HB=  |         | 3.61          |                   |
| BHEAKING | MAVE CELERITY CO |         | 12.22         |                   |
| RSODDE   | .0048            | RSHFRQE | .3742         | RELFRUE .0114     |
| PLP08=   | 125.7135         | PLNEG   | -25.6734      |                   |
| PLNET    | 100.0401         |         |               |                   |

Figure 8. Three examples of output for wave gage pair at Channel Islands Harbor.--Continued

## Example 3

.

| GAUGE NU. | munim           | UAT        | TIME     |                |
|-----------|-----------------|------------|----------|----------------|
| 311       | 7               | 26         | 2000     | 9              |
| 112       | 7               | 26         | 2000     |                |
| 216       |                 |            | 2000     |                |
|           |                 |            |          |                |
| -         |                 |            |          |                |
| 1         | BIGHALI         | ,          | PMDBU(1) |                |
| 1         | .006136         |            | .000930  |                |
| 2         | s12272          |            | 000397   |                |
| 3         | .018408         |            | .000179  |                |
| ù         | .024544         |            | .000052  |                |
| ¥.        | .042051         |            | .000013  |                |
| <u> </u>  | .049087         |            | .000021  |                |
|           | 041007          |            | 000001   |                |
| 10        | .001354         |            | .000014  |                |
| 12        | .073631         |            | .000074  |                |
| 13        | .079767         |            | .000085  |                |
| 17        | 0104311         |            | .000080  |                |
| 19        | .116583         |            | .000008  |                |
| 23        | .141126         |            | .000011  |                |
| 12        | .196350         |            | .000009  |                |
| 14        | - 208621        |            | .000100  |                |
| 15        | .214757         |            | .000104  |                |
| 10        |                 |            | .000019  |                |
|           | 257709          |            | 00006#   |                |
| 42        |                 |            | 000044   |                |
| 22        | + \$ 37470      |            | .0001.00 |                |
| 71        | e433631         |            | .001034  |                |
|           |                 |            |          |                |
|           |                 |            |          |                |
| 1         | SIGMA(          | 1)         | PCT      | THETALL        |
|           |                 |            |          |                |
|           |                 |            |          |                |
| NBALFRE   |                 |            | 202      |                |
| DEPTH OF  | WATER AT GAUGE  | SITE       | 23.5     |                |
| AVGIE     | 21.702          | AV028      | 20.287   |                |
| AUMAN     | .251            | BUM28      | . 266    |                |
| WRITHT    | - 071           | WAIIMA     | 081      |                |
| DATEDA    |                 | DATTOR     | 1 000    |                |
| SUNEN-    | 3.400           | IN TINES   | 3.277    |                |
| SOMENS.   | .35101417       |            |          |                |
| DHEAKING  | TAVE HEIGHT HE  |            | 3.66     |                |
| BREAKING  | HAVE CELERITY C | 5 <b>#</b> | 15.50    |                |
| RSODDR    | .0095           | RSHFHUS    | .5675    | HATLEHAN .0145 |
| PLPOSE    | 135.5367        | PLNEGR     | -40.2297 |                |
| PLNETS    | 95.3070         |            |          |                |
|           | -               |            |          |                |

Figure 8. Three examples of output for wave gage pair at Channel Islands Harbor.--Continued

- BRUNO, R.O., et al., "Longshore Sand Transport Study at Channel Islands Harbor, California," TP 81-2, U.S. Army, Corps of Engineers, Coastal Engineering Research Center, Fort Belvoir, Va., Mar. 1981.
- HARRIS, D.L., "Finite Spectrum Analyses of Wave Records," Proceedings of the International Symposium on Ocean Wave Measurement and Analysis, American Society of Civil Engineers, 1974, pp. 107-124 (also Reprint 6-74, U.S. Army, Corps of Engineers, Coastal Engineering Research Center, Fort Belvoir, Va., NTIS A002 114).
- KOMAR, P.D., and GAUGHAN, M.K., "Airy Wave Theory and Breaker Height Prediction," *Proceedings of the 13th Coastal Engineering Conference*, American Society of Civil Engineers, Vol. 1, 1972, pp. 405-418.
- THOMPSON, E.F., "Energy Spectra in Shallow U.S. Coastal Waters," TP 80-2, U.S. Army, Corps of Engineers, Coastal Engineering Research Center, Fort Belvoir, Va., Feb. 1980.
- U.S. ARMY, CORPS OF ENGINEERS, COASTAL ENGINEERING RESEARCH CENTER, *Shore Protection Manual*, 3d ed., Vols. I, II, and III, Stock No. 008-022-00113-1, U.S. Government Printing Office, Washington, D.C., 1977, 1,262 pp.

| <ul> <li>Walton, Todd L.</li> <li>Walton, Todd L.</li> <li>Computer algorithm to calculate jongshore energy flux and wave direction from a two pressure sensor array / by road L, walton and Nobert G. DeanFort Beivoir, Va.: U.S. Arruy, Corps of Englueers, Coastal Englueering Research Center; Springfield, Va.: available from NTS, 192.</li> <li>(131) P.: 111; 28 cm(Technical paper / U.S. Oastal Englueers, Coastal Englueering Research Center; No. 82-20.</li> <li>(211) P.: 111; 28 cm(Technical paper / U.S. Oastal Englueers, Coastal Englueering Research Center; no. 82-2</li> <li>(211) P.: 111; 28 cm(Technical paper / U.S. Oastal Englueering Research Center; no. 82-2</li> <li>(212) P.: 111; 28 cm(Technical paper / U.S. Oastal Englueering Research Program and designed to accept data In the CERC magnetic-tape forma of record lengths consisting of 4,100 values) is used to analyze avave data and sample outputs for some wave records from a wave gage pressure sensor pair are given.</li> <li>1. Computer programs. 2. Wave direction measurement. 3. Wave gages to a science for the REC magnetic-tape form a wave gage pressure sensor pair are given.</li> <li>1. Computer programs. 2. Wave direction measurement. 3. Wave gages to a science form.</li> <li>1. Computer programs. 2. Wave Girection measurement. 3. Wave gages to a science form.</li> <li>1. Computer programs. 2. Wave Girection measurement. 3. Wave gages to a science form.</li> <li>203</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>Maiton, Todd L.</li> <li>Gomputer algorithm to calculate longshore energy flux and wave direction from a two pressure sensor array / by Todd L, Waiton and Nobert G. DeanPort Belvoir, Va.: U.S. Arry, Orrys of Engineers, Coastal Engineering Research Center; Springfield, Va.: available [1] p.: 1111.; 12 exa(Technical paper / U.S. Coastal Engineering Research Center; so the sensor sense is a sense of the sens</li></ul> |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Walton, Todd L.</li> <li>Malton, Todd L.</li> <li>Computer sigorithm to calculate longshore energy flux and wave ditection from a two pressure sensor array / by Todd L. Maiton and Robert G. DanFor Relvoir, Va.: 10.5. Arry, Corps of Engineers, coastal Engineering Research Center; Springfield, W.: a validable from MTLS, 1932.</li> <li>Marton MTS, 1942.</li> <li>Marton MTS, 111.</li> <li>M</li></ul> | <ul> <li>Walton, Todd L.</li> <li>Computer Jagorithm to calculate longshore energy flux and wave direction from a two pressure sensor array / by Todd L, Walton and Wobert G. PeanFort Balvoir, Va. : U.S. Army. Orgs of Engineers, Coastal Engineering Research Center ; Springfield, Wa. : available from NTIS, 192.</li> <li>[31] p.: iill.; 28 cm(Technical paper / U.S. Coastal Engineering Research Center ; no. 82-2). Cover title. "August 1982.</li> <li>[31] p.: iill.; 28 cm(Technical paper / U.S. Coastal Engineering Research Center ; no. 82-2). Cover title. "August 1982.</li> <li>[31] p.: analyze word data collected at Channel Islands Barbor, ing Research Frogram (or title for the CERC Longshore Sand Transport Research Program (or title or the CERC Longshore Sand Sand Transport Research Program (or title for the SCE Longshore Sand Sand Transport Research Program (or title or the CERC Longshore Sand Sand Transport Scene data and Sangle outpute for some sage presente sensor pair are given.</li> <li>1. Computer programs. 2. Wave Sage Presente sensor pair are given.</li> <li>1. Computer programs. 2. Wave spectra 6. Longshore energy finx. I. Title. II. Ban, Nebert (. 11). Setter: Technical paper (Lossial Engineering Research Center (U.S.)); no. 82-2.</li> <li>(Coastal Engineering Research Center (U.S.)); no. 82-2.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

